| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng4.b |
|- B = ( Base ` R ) |
| 2 |
|
isdrng4.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
isdrng4.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
isdrng4.x |
|- .x. = ( .r ` R ) |
| 5 |
|
isdrng4.u |
|- U = ( Unit ` R ) |
| 6 |
|
isdrng4.r |
|- ( ph -> R e. Ring ) |
| 7 |
|
ringinveu.1 |
|- ( ph -> X e. B ) |
| 8 |
|
ringinveu.2 |
|- ( ph -> Y e. B ) |
| 9 |
|
ringinveu.3 |
|- ( ph -> Z e. B ) |
| 10 |
|
ringinveu.4 |
|- ( ph -> ( Y .x. X ) = .1. ) |
| 11 |
|
ringinveu.5 |
|- ( ph -> ( X .x. Z ) = .1. ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( Y .x. ( X .x. Z ) ) = ( Y .x. .1. ) ) |
| 13 |
10
|
oveq1d |
|- ( ph -> ( ( Y .x. X ) .x. Z ) = ( .1. .x. Z ) ) |
| 14 |
1 4 6 8 7 9
|
ringassd |
|- ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) ) |
| 15 |
1 4 3 6 9
|
ringlidmd |
|- ( ph -> ( .1. .x. Z ) = Z ) |
| 16 |
13 14 15
|
3eqtr3d |
|- ( ph -> ( Y .x. ( X .x. Z ) ) = Z ) |
| 17 |
1 4 3 6 8
|
ringridmd |
|- ( ph -> ( Y .x. .1. ) = Y ) |
| 18 |
12 16 17
|
3eqtr3d |
|- ( ph -> Z = Y ) |