| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng4.b |
|- B = ( Base ` R ) |
| 2 |
|
isdrng4.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
isdrng4.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
isdrng4.x |
|- .x. = ( .r ` R ) |
| 5 |
|
isdrng4.u |
|- U = ( Unit ` R ) |
| 6 |
|
isdrng4.r |
|- ( ph -> R e. Ring ) |
| 7 |
1 5 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) |
| 8 |
6
|
biantrurd |
|- ( ph -> ( U = ( B \ { .0. } ) <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) ) |
| 9 |
7 8
|
bitr4id |
|- ( ph -> ( R e. DivRing <-> U = ( B \ { .0. } ) ) ) |
| 10 |
5 3
|
1unit |
|- ( R e. Ring -> .1. e. U ) |
| 11 |
6 10
|
syl |
|- ( ph -> .1. e. U ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> .1. e. U ) |
| 13 |
|
simpr |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> U = ( B \ { .0. } ) ) |
| 14 |
12 13
|
eleqtrd |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> .1. e. ( B \ { .0. } ) ) |
| 15 |
|
eldifsni |
|- ( .1. e. ( B \ { .0. } ) -> .1. =/= .0. ) |
| 16 |
14 15
|
syl |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> .1. =/= .0. ) |
| 17 |
|
simpll |
|- ( ( ( ph /\ U = ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) -> ph ) |
| 18 |
13
|
eleq2d |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> ( x e. U <-> x e. ( B \ { .0. } ) ) ) |
| 19 |
18
|
biimpar |
|- ( ( ( ph /\ U = ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) -> x e. U ) |
| 20 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> R e. Ring ) |
| 21 |
1 5
|
unitcl |
|- ( x e. U -> x e. B ) |
| 22 |
21
|
ad5antlr |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> x e. B ) |
| 23 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> y e. B ) |
| 24 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> z e. B ) |
| 25 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> ( y .x. x ) = .1. ) |
| 26 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> ( x .x. z ) = .1. ) |
| 27 |
1 2 3 4 5 20 22 23 24 25 26
|
ringinveu |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> z = y ) |
| 28 |
27
|
oveq2d |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> ( x .x. z ) = ( x .x. y ) ) |
| 29 |
28 26
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) /\ z e. B ) /\ ( x .x. z ) = .1. ) -> ( x .x. y ) = .1. ) |
| 30 |
21
|
ad3antlr |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> x e. B ) |
| 31 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 32 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 33 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
| 34 |
5 3 31 32 33
|
isunit |
|- ( x e. U <-> ( x ( ||r ` R ) .1. /\ x ( ||r ` ( oppR ` R ) ) .1. ) ) |
| 35 |
34
|
simprbi |
|- ( x e. U -> x ( ||r ` ( oppR ` R ) ) .1. ) |
| 36 |
35
|
ad3antlr |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> x ( ||r ` ( oppR ` R ) ) .1. ) |
| 37 |
32 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
| 38 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 39 |
37 33 38
|
dvdsr2 |
|- ( x e. B -> ( x ( ||r ` ( oppR ` R ) ) .1. <-> E. y e. B ( y ( .r ` ( oppR ` R ) ) x ) = .1. ) ) |
| 40 |
39
|
biimpa |
|- ( ( x e. B /\ x ( ||r ` ( oppR ` R ) ) .1. ) -> E. y e. B ( y ( .r ` ( oppR ` R ) ) x ) = .1. ) |
| 41 |
1 4 32 38
|
opprmul |
|- ( y ( .r ` ( oppR ` R ) ) x ) = ( x .x. y ) |
| 42 |
41
|
eqeq1i |
|- ( ( y ( .r ` ( oppR ` R ) ) x ) = .1. <-> ( x .x. y ) = .1. ) |
| 43 |
42
|
rexbii |
|- ( E. y e. B ( y ( .r ` ( oppR ` R ) ) x ) = .1. <-> E. y e. B ( x .x. y ) = .1. ) |
| 44 |
40 43
|
sylib |
|- ( ( x e. B /\ x ( ||r ` ( oppR ` R ) ) .1. ) -> E. y e. B ( x .x. y ) = .1. ) |
| 45 |
|
oveq2 |
|- ( y = z -> ( x .x. y ) = ( x .x. z ) ) |
| 46 |
45
|
eqeq1d |
|- ( y = z -> ( ( x .x. y ) = .1. <-> ( x .x. z ) = .1. ) ) |
| 47 |
46
|
cbvrexvw |
|- ( E. y e. B ( x .x. y ) = .1. <-> E. z e. B ( x .x. z ) = .1. ) |
| 48 |
44 47
|
sylib |
|- ( ( x e. B /\ x ( ||r ` ( oppR ` R ) ) .1. ) -> E. z e. B ( x .x. z ) = .1. ) |
| 49 |
30 36 48
|
syl2anc |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> E. z e. B ( x .x. z ) = .1. ) |
| 50 |
29 49
|
r19.29a |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> ( x .x. y ) = .1. ) |
| 51 |
|
simpr |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> ( y .x. x ) = .1. ) |
| 52 |
50 51
|
jca |
|- ( ( ( ( ph /\ x e. U ) /\ y e. B ) /\ ( y .x. x ) = .1. ) -> ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) |
| 53 |
52
|
anasss |
|- ( ( ( ph /\ x e. U ) /\ ( y e. B /\ ( y .x. x ) = .1. ) ) -> ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) |
| 54 |
21
|
adantl |
|- ( ( ph /\ x e. U ) -> x e. B ) |
| 55 |
34
|
simplbi |
|- ( x e. U -> x ( ||r ` R ) .1. ) |
| 56 |
55
|
adantl |
|- ( ( ph /\ x e. U ) -> x ( ||r ` R ) .1. ) |
| 57 |
1 31 4
|
dvdsr2 |
|- ( x e. B -> ( x ( ||r ` R ) .1. <-> E. y e. B ( y .x. x ) = .1. ) ) |
| 58 |
57
|
biimpa |
|- ( ( x e. B /\ x ( ||r ` R ) .1. ) -> E. y e. B ( y .x. x ) = .1. ) |
| 59 |
54 56 58
|
syl2anc |
|- ( ( ph /\ x e. U ) -> E. y e. B ( y .x. x ) = .1. ) |
| 60 |
53 59
|
reximddv |
|- ( ( ph /\ x e. U ) -> E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) |
| 61 |
17 19 60
|
syl2anc |
|- ( ( ( ph /\ U = ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) -> E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) |
| 62 |
61
|
ralrimiva |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) |
| 63 |
16 62
|
jca |
|- ( ( ph /\ U = ( B \ { .0. } ) ) -> ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) |
| 64 |
1 5
|
unitss |
|- U C_ B |
| 65 |
64
|
a1i |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> U C_ B ) |
| 66 |
6
|
adantr |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> R e. Ring ) |
| 67 |
|
simprl |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> .1. =/= .0. ) |
| 68 |
5 2 3
|
0unit |
|- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) ) |
| 69 |
68
|
necon3bbid |
|- ( R e. Ring -> ( -. .0. e. U <-> .1. =/= .0. ) ) |
| 70 |
69
|
biimpar |
|- ( ( R e. Ring /\ .1. =/= .0. ) -> -. .0. e. U ) |
| 71 |
66 67 70
|
syl2anc |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> -. .0. e. U ) |
| 72 |
|
ssdifsn |
|- ( U C_ ( B \ { .0. } ) <-> ( U C_ B /\ -. .0. e. U ) ) |
| 73 |
65 71 72
|
sylanbrc |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> U C_ ( B \ { .0. } ) ) |
| 74 |
|
simplr |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> x e. ( B \ { .0. } ) ) |
| 75 |
74
|
eldifad |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> x e. B ) |
| 76 |
|
simpr |
|- ( ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> ( y .x. x ) = .1. ) |
| 77 |
76
|
reximi |
|- ( E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> E. y e. B ( y .x. x ) = .1. ) |
| 78 |
77
|
adantl |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> E. y e. B ( y .x. x ) = .1. ) |
| 79 |
57
|
biimpar |
|- ( ( x e. B /\ E. y e. B ( y .x. x ) = .1. ) -> x ( ||r ` R ) .1. ) |
| 80 |
75 78 79
|
syl2anc |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> x ( ||r ` R ) .1. ) |
| 81 |
|
simpl |
|- ( ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> ( x .x. y ) = .1. ) |
| 82 |
81
|
reximi |
|- ( E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> E. y e. B ( x .x. y ) = .1. ) |
| 83 |
82
|
adantl |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> E. y e. B ( x .x. y ) = .1. ) |
| 84 |
83 43
|
sylibr |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> E. y e. B ( y ( .r ` ( oppR ` R ) ) x ) = .1. ) |
| 85 |
39
|
biimpar |
|- ( ( x e. B /\ E. y e. B ( y ( .r ` ( oppR ` R ) ) x ) = .1. ) -> x ( ||r ` ( oppR ` R ) ) .1. ) |
| 86 |
75 84 85
|
syl2anc |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> x ( ||r ` ( oppR ` R ) ) .1. ) |
| 87 |
80 86 34
|
sylanbrc |
|- ( ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) /\ E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) -> x e. U ) |
| 88 |
87
|
ex |
|- ( ( ( ph /\ .1. =/= .0. ) /\ x e. ( B \ { .0. } ) ) -> ( E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> x e. U ) ) |
| 89 |
88
|
ralimdva |
|- ( ( ph /\ .1. =/= .0. ) -> ( A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) -> A. x e. ( B \ { .0. } ) x e. U ) ) |
| 90 |
89
|
impr |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> A. x e. ( B \ { .0. } ) x e. U ) |
| 91 |
|
dfss3 |
|- ( ( B \ { .0. } ) C_ U <-> A. x e. ( B \ { .0. } ) x e. U ) |
| 92 |
90 91
|
sylibr |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> ( B \ { .0. } ) C_ U ) |
| 93 |
73 92
|
eqssd |
|- ( ( ph /\ ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) -> U = ( B \ { .0. } ) ) |
| 94 |
63 93
|
impbida |
|- ( ph -> ( U = ( B \ { .0. } ) <-> ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) ) |
| 95 |
9 94
|
bitrd |
|- ( ph -> ( R e. DivRing <-> ( .1. =/= .0. /\ A. x e. ( B \ { .0. } ) E. y e. B ( ( x .x. y ) = .1. /\ ( y .x. x ) = .1. ) ) ) ) |