Metamath Proof Explorer


Theorem 2idlval

Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses 2idlval.i 𝐼 = ( LIdeal ‘ 𝑅 )
2idlval.o 𝑂 = ( oppr𝑅 )
2idlval.j 𝐽 = ( LIdeal ‘ 𝑂 )
2idlval.t 𝑇 = ( 2Ideal ‘ 𝑅 )
Assertion 2idlval 𝑇 = ( 𝐼𝐽 )

Proof

Step Hyp Ref Expression
1 2idlval.i 𝐼 = ( LIdeal ‘ 𝑅 )
2 2idlval.o 𝑂 = ( oppr𝑅 )
3 2idlval.j 𝐽 = ( LIdeal ‘ 𝑂 )
4 2idlval.t 𝑇 = ( 2Ideal ‘ 𝑅 )
5 fveq2 ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) )
6 5 1 eqtr4di ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = 𝐼 )
7 fveq2 ( 𝑟 = 𝑅 → ( oppr𝑟 ) = ( oppr𝑅 ) )
8 7 2 eqtr4di ( 𝑟 = 𝑅 → ( oppr𝑟 ) = 𝑂 )
9 8 fveq2d ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr𝑟 ) ) = ( LIdeal ‘ 𝑂 ) )
10 9 3 eqtr4di ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr𝑟 ) ) = 𝐽 )
11 6 10 ineq12d ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr𝑟 ) ) ) = ( 𝐼𝐽 ) )
12 df-2idl 2Ideal = ( 𝑟 ∈ V ↦ ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr𝑟 ) ) ) )
13 1 fvexi 𝐼 ∈ V
14 13 inex1 ( 𝐼𝐽 ) ∈ V
15 11 12 14 fvmpt ( 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼𝐽 ) )
16 fvprc ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ∅ )
17 inss1 ( 𝐼𝐽 ) ⊆ 𝐼
18 fvprc ( ¬ 𝑅 ∈ V → ( LIdeal ‘ 𝑅 ) = ∅ )
19 1 18 syl5eq ( ¬ 𝑅 ∈ V → 𝐼 = ∅ )
20 sseq0 ( ( ( 𝐼𝐽 ) ⊆ 𝐼𝐼 = ∅ ) → ( 𝐼𝐽 ) = ∅ )
21 17 19 20 sylancr ( ¬ 𝑅 ∈ V → ( 𝐼𝐽 ) = ∅ )
22 16 21 eqtr4d ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼𝐽 ) )
23 15 22 pm2.61i ( 2Ideal ‘ 𝑅 ) = ( 𝐼𝐽 )
24 4 23 eqtri 𝑇 = ( 𝐼𝐽 )