| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsdrng.0 | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 2 |  | qsdrng.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 3 |  | qsdrng.r | ⊢ ( 𝜑  →  𝑅  ∈  NzRing ) | 
						
							| 4 |  | qsdrng.2 | ⊢ ( 𝜑  →  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 5 |  | qsdrnglem2.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | qsdrnglem2.q | ⊢ ( 𝜑  →  𝑄  ∈  DivRing ) | 
						
							| 7 |  | qsdrnglem2.j | ⊢ ( 𝜑  →  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 8 |  | qsdrnglem2.m | ⊢ ( 𝜑  →  𝑀  ⊆  𝐽 ) | 
						
							| 9 |  | qsdrnglem2.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐽  ∖  𝑀 ) ) | 
						
							| 10 |  | nzrring | ⊢ ( 𝑅  ∈  NzRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑅  ∈  Ring ) | 
						
							| 13 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 14 | 12 | ringgrpd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑅  ∈  Grp ) | 
						
							| 15 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 16 | 5 15 | lidlss | ⊢ ( 𝐽  ∈  ( LIdeal ‘ 𝑅 )  →  𝐽  ⊆  𝐵 ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝐽  ⊆  𝐵 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑠  ∈  𝐵 ) | 
						
							| 19 | 9 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐽 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 21 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 22 | 15 5 21 | lidlmcl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑠  ∈  𝐵  ∧  𝑋  ∈  𝐽 ) )  →  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐽 ) | 
						
							| 23 | 12 13 18 20 22 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐽 ) | 
						
							| 24 | 17 23 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵 ) | 
						
							| 25 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 26 | 5 25 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 27 | 12 26 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 28 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 29 |  | eqid | ⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 ) | 
						
							| 30 | 5 28 29 | grpasscan1 | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  𝐵 )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 31 | 14 24 27 30 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 32 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑀  ⊆  𝐽 ) | 
						
							| 33 | 7 16 | syl | ⊢ ( 𝜑  →  𝐽  ⊆  𝐵 ) | 
						
							| 34 | 8 33 | sstrd | ⊢ ( 𝜑  →  𝑀  ⊆  𝐵 ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑀  ⊆  𝐵 ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  ( [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 39 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 40 |  | eqid | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 ) | 
						
							| 41 |  | eqid | ⊢ ( 1r ‘ 𝑄 )  =  ( 1r ‘ 𝑄 ) | 
						
							| 42 |  | eqid | ⊢ ( invr ‘ 𝑄 )  =  ( invr ‘ 𝑄 ) | 
						
							| 43 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑄  ∈  DivRing ) | 
						
							| 44 | 33 19 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 45 |  | ovex | ⊢ ( 𝑅  ~QG  𝑀 )  ∈  V | 
						
							| 46 | 45 | ecelqsi | ⊢ ( 𝑋  ∈  𝐵  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 47 | 44 46 | syl | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 48 | 2 | a1i | ⊢ ( 𝜑  →  𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 49 | 5 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 45 | a1i | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝑀 )  ∈  V ) | 
						
							| 51 | 48 49 50 3 | qusbas | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝑅  ~QG  𝑀 ) )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 52 | 47 51 | eleqtrd | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 54 | 4 | 2idllidld | ⊢ ( 𝜑  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 55 | 15 | lidlsubg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 56 | 11 54 55 | syl2anc | ⊢ ( 𝜑  →  𝑀  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑅  ~QG  𝑀 )  =  ( 𝑅  ~QG  𝑀 ) | 
						
							| 58 | 5 57 | eqger | ⊢ ( 𝑀  ∈  ( SubGrp ‘ 𝑅 )  →  ( 𝑅  ~QG  𝑀 )  Er  𝐵 ) | 
						
							| 59 | 56 58 | syl | ⊢ ( 𝜑  →  ( 𝑅  ~QG  𝑀 )  Er  𝐵 ) | 
						
							| 60 |  | ecref | ⊢ ( ( ( 𝑅  ~QG  𝑀 )  Er  𝐵  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 61 | 59 44 60 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 62 | 9 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑀 ) | 
						
							| 63 |  | nelne1 | ⊢ ( ( 𝑋  ∈  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ∧  ¬  𝑋  ∈  𝑀 )  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ≠  𝑀 ) | 
						
							| 64 | 61 62 63 | syl2anc | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ≠  𝑀 ) | 
						
							| 65 |  | lidlnsg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 66 | 11 54 65 | syl2anc | ⊢ ( 𝜑  →  𝑀  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 67 | 2 | qus0g | ⊢ ( 𝑀  ∈  ( NrmSGrp ‘ 𝑅 )  →  ( 0g ‘ 𝑄 )  =  𝑀 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑄 )  =  𝑀 ) | 
						
							| 69 | 64 68 | neeqtrrd | ⊢ ( 𝜑  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ≠  ( 0g ‘ 𝑄 ) ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  [ 𝑋 ] ( 𝑅  ~QG  𝑀 )  ≠  ( 0g ‘ 𝑄 ) ) | 
						
							| 71 | 38 39 40 41 42 43 53 70 | drnginvrld | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 72 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 73 | 44 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 74 | 2 5 21 40 12 72 18 73 | qusmul2idl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 75 | 37 71 74 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅  ~QG  𝑀 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 76 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 77 | 2 76 25 | qus1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) )  →  ( 𝑄  ∈  Ring  ∧  [ ( 1r ‘ 𝑅 ) ] ( 𝑅  ~QG  𝑀 )  =  ( 1r ‘ 𝑄 ) ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) )  →  [ ( 1r ‘ 𝑅 ) ] ( 𝑅  ~QG  𝑀 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 79 | 12 72 78 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  [ ( 1r ‘ 𝑅 ) ] ( 𝑅  ~QG  𝑀 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 80 | 75 79 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅  ~QG  𝑀 )  =  [ ( 1r ‘ 𝑅 ) ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 81 | 56 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝑀  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 82 | 81 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 𝑅  ~QG  𝑀 )  Er  𝐵 ) | 
						
							| 83 | 82 27 | erth2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅  ~QG  𝑀 ) ( 1r ‘ 𝑅 )  ↔  [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅  ~QG  𝑀 )  =  [ ( 1r ‘ 𝑅 ) ] ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 84 | 80 83 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅  ~QG  𝑀 ) ( 1r ‘ 𝑅 ) ) | 
						
							| 85 | 5 29 28 57 | eqgval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ⊆  𝐵 )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅  ~QG  𝑀 ) ( 1r ‘ 𝑅 )  ↔  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  𝐵  ∧  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝑀 ) ) ) | 
						
							| 86 | 85 | biimpa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ⊆  𝐵 )  ∧  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅  ~QG  𝑀 ) ( 1r ‘ 𝑅 ) )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ∈  𝐵  ∧  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝑀 ) ) | 
						
							| 87 | 86 | simp3d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ⊆  𝐵 )  ∧  ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅  ~QG  𝑀 ) ( 1r ‘ 𝑅 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝑀 ) | 
						
							| 88 | 12 35 84 87 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝑀 ) | 
						
							| 89 | 32 88 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) | 
						
							| 90 | 15 28 | lidlacl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐽  ∧  ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  𝐽 ) )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) )  ∈  𝐽 ) | 
						
							| 91 | 12 13 23 89 90 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) )  ∈  𝐽 ) | 
						
							| 92 | 31 91 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  ( 1r ‘ 𝑅 )  ∈  𝐽 ) | 
						
							| 93 | 15 5 25 | lidl1el | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 )  ∈  𝐽  ↔  𝐽  =  𝐵 ) ) | 
						
							| 94 | 93 | biimpa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 1r ‘ 𝑅 )  ∈  𝐽 )  →  𝐽  =  𝐵 ) | 
						
							| 95 | 12 13 92 94 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) )  →  𝐽  =  𝐵 ) | 
						
							| 96 | 38 39 42 6 52 69 | drnginvrcld | ⊢ ( 𝜑  →  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 97 | 96 51 | eleqtrrd | ⊢ ( 𝜑  →  ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝑀 ) ) ) | 
						
							| 98 |  | elqsi | ⊢ ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  ∈  ( 𝐵  /  ( 𝑅  ~QG  𝑀 ) )  →  ∃ 𝑠  ∈  𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 99 | 97 98 | syl | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅  ~QG  𝑀 ) )  =  [ 𝑠 ] ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 100 | 95 99 | r19.29a | ⊢ ( 𝜑  →  𝐽  =  𝐵 ) |