| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
qsdrng.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
| 3 |
|
qsdrng.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 4 |
|
qsdrng.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 5 |
|
qsdrnglem2.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
qsdrnglem2.q |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |
| 7 |
|
qsdrnglem2.j |
⊢ ( 𝜑 → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 8 |
|
qsdrnglem2.m |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐽 ) |
| 9 |
|
qsdrnglem2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐽 ∖ 𝑀 ) ) |
| 10 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 13 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 14 |
12
|
ringgrpd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Grp ) |
| 15 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 16 |
5 15
|
lidlss |
⊢ ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽 ⊆ 𝐵 ) |
| 17 |
13 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 ⊆ 𝐵 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑠 ∈ 𝐵 ) |
| 19 |
9
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑋 ∈ 𝐽 ) |
| 21 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 22 |
15 5 21
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑋 ∈ 𝐽 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ) |
| 23 |
12 13 18 20 22
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ) |
| 24 |
17 23
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
5 25
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 27 |
12 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 28 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 29 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 30 |
5 28 29
|
grpasscan1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 31 |
14 24 27 30
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 32 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ⊆ 𝐽 ) |
| 33 |
7 16
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐵 ) |
| 34 |
8 33
|
sstrd |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐵 ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ⊆ 𝐵 ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ) |
| 38 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 39 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 40 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 41 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
| 42 |
|
eqid |
⊢ ( invr ‘ 𝑄 ) = ( invr ‘ 𝑄 ) |
| 43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑄 ∈ DivRing ) |
| 44 |
33 19
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 45 |
|
ovex |
⊢ ( 𝑅 ~QG 𝑀 ) ∈ V |
| 46 |
45
|
ecelqsi |
⊢ ( 𝑋 ∈ 𝐵 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
| 47 |
44 46
|
syl |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
| 48 |
2
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ) |
| 49 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 50 |
45
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) ∈ V ) |
| 51 |
48 49 50 3
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
| 52 |
47 51
|
eleqtrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
| 54 |
4
|
2idllidld |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 55 |
15
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 56 |
11 54 55
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 57 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑀 ) = ( 𝑅 ~QG 𝑀 ) |
| 58 |
5 57
|
eqger |
⊢ ( 𝑀 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
| 59 |
56 58
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
| 60 |
|
ecref |
⊢ ( ( ( 𝑅 ~QG 𝑀 ) Er 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) |
| 61 |
59 44 60
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) |
| 62 |
9
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑀 ) |
| 63 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∧ ¬ 𝑋 ∈ 𝑀 ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ 𝑀 ) |
| 64 |
61 62 63
|
syl2anc |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ 𝑀 ) |
| 65 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 66 |
11 54 65
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 67 |
2
|
qus0g |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → ( 0g ‘ 𝑄 ) = 𝑀 ) |
| 68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) = 𝑀 ) |
| 69 |
64 68
|
neeqtrrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ ( 0g ‘ 𝑄 ) ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ ( 0g ‘ 𝑄 ) ) |
| 71 |
38 39 40 41 42 43 53 70
|
drnginvrld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
| 72 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 73 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑋 ∈ 𝐵 ) |
| 74 |
2 5 21 40 12 72 18 73
|
qusmul2idl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) ) |
| 75 |
37 71 74
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
| 76 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 77 |
2 76 25
|
qus1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) ) |
| 78 |
77
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
| 79 |
12 72 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
| 80 |
75 79
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) |
| 81 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 82 |
81 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
| 83 |
82 27
|
erth2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ↔ [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) ) |
| 84 |
80 83
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) |
| 85 |
5 29 28 57
|
eqgval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ↔ ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) ) ) |
| 86 |
85
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) ) |
| 87 |
86
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) |
| 88 |
12 35 84 87
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) |
| 89 |
32 88
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐽 ) |
| 90 |
15 28
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐽 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ∈ 𝐽 ) |
| 91 |
12 13 23 89 90
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ∈ 𝐽 ) |
| 92 |
31 91
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐽 ) |
| 93 |
15 5 25
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ∈ 𝐽 ↔ 𝐽 = 𝐵 ) ) |
| 94 |
93
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐽 ) → 𝐽 = 𝐵 ) |
| 95 |
12 13 92 94
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 = 𝐵 ) |
| 96 |
38 39 42 6 52 69
|
drnginvrcld |
⊢ ( 𝜑 → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 97 |
96 51
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
| 98 |
|
elqsi |
⊢ ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ 𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 99 |
97 98
|
syl |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
| 100 |
95 99
|
r19.29a |
⊢ ( 𝜑 → 𝐽 = 𝐵 ) |