| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsdrng.0 |  |-  O = ( oppR ` R ) | 
						
							| 2 |  | qsdrng.q |  |-  Q = ( R /s ( R ~QG M ) ) | 
						
							| 3 |  | qsdrng.r |  |-  ( ph -> R e. NzRing ) | 
						
							| 4 |  | qsdrng.2 |  |-  ( ph -> M e. ( 2Ideal ` R ) ) | 
						
							| 5 |  | qsdrnglem2.1 |  |-  B = ( Base ` R ) | 
						
							| 6 |  | qsdrnglem2.q |  |-  ( ph -> Q e. DivRing ) | 
						
							| 7 |  | qsdrnglem2.j |  |-  ( ph -> J e. ( LIdeal ` R ) ) | 
						
							| 8 |  | qsdrnglem2.m |  |-  ( ph -> M C_ J ) | 
						
							| 9 |  | qsdrnglem2.x |  |-  ( ph -> X e. ( J \ M ) ) | 
						
							| 10 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Ring ) | 
						
							| 13 | 7 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J e. ( LIdeal ` R ) ) | 
						
							| 14 | 12 | ringgrpd |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Grp ) | 
						
							| 15 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 16 | 5 15 | lidlss |  |-  ( J e. ( LIdeal ` R ) -> J C_ B ) | 
						
							| 17 | 13 16 | syl |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J C_ B ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> s e. B ) | 
						
							| 19 | 9 | eldifad |  |-  ( ph -> X e. J ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. J ) | 
						
							| 21 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 22 | 15 5 21 | lidlmcl |  |-  ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( s e. B /\ X e. J ) ) -> ( s ( .r ` R ) X ) e. J ) | 
						
							| 23 | 12 13 18 20 22 | syl22anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. J ) | 
						
							| 24 | 17 23 | sseldd |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. B ) | 
						
							| 25 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 26 | 5 25 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 27 | 12 26 | syl |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. B ) | 
						
							| 28 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 29 |  | eqid |  |-  ( invg ` R ) = ( invg ` R ) | 
						
							| 30 | 5 28 29 | grpasscan1 |  |-  ( ( R e. Grp /\ ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) | 
						
							| 31 | 14 24 27 30 | syl3anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) | 
						
							| 32 | 8 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ J ) | 
						
							| 33 | 7 16 | syl |  |-  ( ph -> J C_ B ) | 
						
							| 34 | 8 33 | sstrd |  |-  ( ph -> M C_ B ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ B ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) ) | 
						
							| 38 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 39 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 40 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 41 |  | eqid |  |-  ( 1r ` Q ) = ( 1r ` Q ) | 
						
							| 42 |  | eqid |  |-  ( invr ` Q ) = ( invr ` Q ) | 
						
							| 43 | 6 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> Q e. DivRing ) | 
						
							| 44 | 33 19 | sseldd |  |-  ( ph -> X e. B ) | 
						
							| 45 |  | ovex |  |-  ( R ~QG M ) e. _V | 
						
							| 46 | 45 | ecelqsi |  |-  ( X e. B -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) | 
						
							| 47 | 44 46 | syl |  |-  ( ph -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) | 
						
							| 48 | 2 | a1i |  |-  ( ph -> Q = ( R /s ( R ~QG M ) ) ) | 
						
							| 49 | 5 | a1i |  |-  ( ph -> B = ( Base ` R ) ) | 
						
							| 50 | 45 | a1i |  |-  ( ph -> ( R ~QG M ) e. _V ) | 
						
							| 51 | 48 49 50 3 | qusbas |  |-  ( ph -> ( B /. ( R ~QG M ) ) = ( Base ` Q ) ) | 
						
							| 52 | 47 51 | eleqtrd |  |-  ( ph -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) | 
						
							| 54 | 4 | 2idllidld |  |-  ( ph -> M e. ( LIdeal ` R ) ) | 
						
							| 55 | 15 | lidlsubg |  |-  ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( SubGrp ` R ) ) | 
						
							| 56 | 11 54 55 | syl2anc |  |-  ( ph -> M e. ( SubGrp ` R ) ) | 
						
							| 57 |  | eqid |  |-  ( R ~QG M ) = ( R ~QG M ) | 
						
							| 58 | 5 57 | eqger |  |-  ( M e. ( SubGrp ` R ) -> ( R ~QG M ) Er B ) | 
						
							| 59 | 56 58 | syl |  |-  ( ph -> ( R ~QG M ) Er B ) | 
						
							| 60 |  | ecref |  |-  ( ( ( R ~QG M ) Er B /\ X e. B ) -> X e. [ X ] ( R ~QG M ) ) | 
						
							| 61 | 59 44 60 | syl2anc |  |-  ( ph -> X e. [ X ] ( R ~QG M ) ) | 
						
							| 62 | 9 | eldifbd |  |-  ( ph -> -. X e. M ) | 
						
							| 63 |  | nelne1 |  |-  ( ( X e. [ X ] ( R ~QG M ) /\ -. X e. M ) -> [ X ] ( R ~QG M ) =/= M ) | 
						
							| 64 | 61 62 63 | syl2anc |  |-  ( ph -> [ X ] ( R ~QG M ) =/= M ) | 
						
							| 65 |  | lidlnsg |  |-  ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) | 
						
							| 66 | 11 54 65 | syl2anc |  |-  ( ph -> M e. ( NrmSGrp ` R ) ) | 
						
							| 67 | 2 | qus0g |  |-  ( M e. ( NrmSGrp ` R ) -> ( 0g ` Q ) = M ) | 
						
							| 68 | 66 67 | syl |  |-  ( ph -> ( 0g ` Q ) = M ) | 
						
							| 69 | 64 68 | neeqtrrd |  |-  ( ph -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) | 
						
							| 70 | 69 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) | 
						
							| 71 | 38 39 40 41 42 43 53 70 | drnginvrld |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) | 
						
							| 72 | 4 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) | 
						
							| 73 | 44 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. B ) | 
						
							| 74 | 2 5 21 40 12 72 18 73 | qusmul2idl |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = [ ( s ( .r ` R ) X ) ] ( R ~QG M ) ) | 
						
							| 75 | 37 71 74 | 3eqtr3rd |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = ( 1r ` Q ) ) | 
						
							| 76 |  | eqid |  |-  ( 2Ideal ` R ) = ( 2Ideal ` R ) | 
						
							| 77 | 2 76 25 | qus1 |  |-  ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) ) | 
						
							| 78 | 77 | simprd |  |-  ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) | 
						
							| 79 | 12 72 78 | syl2anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) | 
						
							| 80 | 75 79 | eqtr4d |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) | 
						
							| 81 | 56 | ad2antrr |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( SubGrp ` R ) ) | 
						
							| 82 | 81 58 | syl |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( R ~QG M ) Er B ) | 
						
							| 83 | 82 27 | erth2 |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) ) | 
						
							| 84 | 80 83 | mpbird |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) | 
						
							| 85 | 5 29 28 57 | eqgval |  |-  ( ( R e. Ring /\ M C_ B ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) ) | 
						
							| 86 | 85 | biimpa |  |-  ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) | 
						
							| 87 | 86 | simp3d |  |-  ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) | 
						
							| 88 | 12 35 84 87 | syl21anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) | 
						
							| 89 | 32 88 | sseldd |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) | 
						
							| 90 | 15 28 | lidlacl |  |-  ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( ( s ( .r ` R ) X ) e. J /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) | 
						
							| 91 | 12 13 23 89 90 | syl22anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) | 
						
							| 92 | 31 91 | eqeltrrd |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. J ) | 
						
							| 93 | 15 5 25 | lidl1el |  |-  ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) -> ( ( 1r ` R ) e. J <-> J = B ) ) | 
						
							| 94 | 93 | biimpa |  |-  ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( 1r ` R ) e. J ) -> J = B ) | 
						
							| 95 | 12 13 92 94 | syl21anc |  |-  ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J = B ) | 
						
							| 96 | 38 39 42 6 52 69 | drnginvrcld |  |-  ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( Base ` Q ) ) | 
						
							| 97 | 96 51 | eleqtrrd |  |-  ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) ) | 
						
							| 98 |  | elqsi |  |-  ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) | 
						
							| 99 | 97 98 | syl |  |-  ( ph -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) | 
						
							| 100 | 95 99 | r19.29a |  |-  ( ph -> J = B ) |