| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
| 2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
| 3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
| 4 |
|
qsdrng.2 |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
| 5 |
|
qsdrnglem2.1 |
|- B = ( Base ` R ) |
| 6 |
|
qsdrnglem2.q |
|- ( ph -> Q e. DivRing ) |
| 7 |
|
qsdrnglem2.j |
|- ( ph -> J e. ( LIdeal ` R ) ) |
| 8 |
|
qsdrnglem2.m |
|- ( ph -> M C_ J ) |
| 9 |
|
qsdrnglem2.x |
|- ( ph -> X e. ( J \ M ) ) |
| 10 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 11 |
3 10
|
syl |
|- ( ph -> R e. Ring ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Ring ) |
| 13 |
7
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J e. ( LIdeal ` R ) ) |
| 14 |
12
|
ringgrpd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Grp ) |
| 15 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 16 |
5 15
|
lidlss |
|- ( J e. ( LIdeal ` R ) -> J C_ B ) |
| 17 |
13 16
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J C_ B ) |
| 18 |
|
simplr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> s e. B ) |
| 19 |
9
|
eldifad |
|- ( ph -> X e. J ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. J ) |
| 21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 22 |
15 5 21
|
lidlmcl |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( s e. B /\ X e. J ) ) -> ( s ( .r ` R ) X ) e. J ) |
| 23 |
12 13 18 20 22
|
syl22anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. J ) |
| 24 |
17 23
|
sseldd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. B ) |
| 25 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 26 |
5 25
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 27 |
12 26
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. B ) |
| 28 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 29 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 30 |
5 28 29
|
grpasscan1 |
|- ( ( R e. Grp /\ ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 31 |
14 24 27 30
|
syl3anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 32 |
8
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ J ) |
| 33 |
7 16
|
syl |
|- ( ph -> J C_ B ) |
| 34 |
8 33
|
sstrd |
|- ( ph -> M C_ B ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ B ) |
| 36 |
|
simpr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
| 37 |
36
|
oveq1d |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) ) |
| 38 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 39 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 40 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 41 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
| 42 |
|
eqid |
|- ( invr ` Q ) = ( invr ` Q ) |
| 43 |
6
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> Q e. DivRing ) |
| 44 |
33 19
|
sseldd |
|- ( ph -> X e. B ) |
| 45 |
|
ovex |
|- ( R ~QG M ) e. _V |
| 46 |
45
|
ecelqsi |
|- ( X e. B -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) |
| 47 |
44 46
|
syl |
|- ( ph -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) |
| 48 |
2
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG M ) ) ) |
| 49 |
5
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 50 |
45
|
a1i |
|- ( ph -> ( R ~QG M ) e. _V ) |
| 51 |
48 49 50 3
|
qusbas |
|- ( ph -> ( B /. ( R ~QG M ) ) = ( Base ` Q ) ) |
| 52 |
47 51
|
eleqtrd |
|- ( ph -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) |
| 54 |
4
|
2idllidld |
|- ( ph -> M e. ( LIdeal ` R ) ) |
| 55 |
15
|
lidlsubg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( SubGrp ` R ) ) |
| 56 |
11 54 55
|
syl2anc |
|- ( ph -> M e. ( SubGrp ` R ) ) |
| 57 |
|
eqid |
|- ( R ~QG M ) = ( R ~QG M ) |
| 58 |
5 57
|
eqger |
|- ( M e. ( SubGrp ` R ) -> ( R ~QG M ) Er B ) |
| 59 |
56 58
|
syl |
|- ( ph -> ( R ~QG M ) Er B ) |
| 60 |
|
ecref |
|- ( ( ( R ~QG M ) Er B /\ X e. B ) -> X e. [ X ] ( R ~QG M ) ) |
| 61 |
59 44 60
|
syl2anc |
|- ( ph -> X e. [ X ] ( R ~QG M ) ) |
| 62 |
9
|
eldifbd |
|- ( ph -> -. X e. M ) |
| 63 |
|
nelne1 |
|- ( ( X e. [ X ] ( R ~QG M ) /\ -. X e. M ) -> [ X ] ( R ~QG M ) =/= M ) |
| 64 |
61 62 63
|
syl2anc |
|- ( ph -> [ X ] ( R ~QG M ) =/= M ) |
| 65 |
|
lidlnsg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) |
| 66 |
11 54 65
|
syl2anc |
|- ( ph -> M e. ( NrmSGrp ` R ) ) |
| 67 |
2
|
qus0g |
|- ( M e. ( NrmSGrp ` R ) -> ( 0g ` Q ) = M ) |
| 68 |
66 67
|
syl |
|- ( ph -> ( 0g ` Q ) = M ) |
| 69 |
64 68
|
neeqtrrd |
|- ( ph -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) |
| 71 |
38 39 40 41 42 43 53 70
|
drnginvrld |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
| 72 |
4
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
| 73 |
44
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. B ) |
| 74 |
2 5 21 40 12 72 18 73
|
qusmul2idl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = [ ( s ( .r ` R ) X ) ] ( R ~QG M ) ) |
| 75 |
37 71 74
|
3eqtr3rd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
| 76 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 77 |
2 76 25
|
qus1 |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) ) |
| 78 |
77
|
simprd |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
| 79 |
12 72 78
|
syl2anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
| 80 |
75 79
|
eqtr4d |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) |
| 81 |
56
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( SubGrp ` R ) ) |
| 82 |
81 58
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( R ~QG M ) Er B ) |
| 83 |
82 27
|
erth2 |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) ) |
| 84 |
80 83
|
mpbird |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) |
| 85 |
5 29 28 57
|
eqgval |
|- ( ( R e. Ring /\ M C_ B ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) ) |
| 86 |
85
|
biimpa |
|- ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) |
| 87 |
86
|
simp3d |
|- ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) |
| 88 |
12 35 84 87
|
syl21anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) |
| 89 |
32 88
|
sseldd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) |
| 90 |
15 28
|
lidlacl |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( ( s ( .r ` R ) X ) e. J /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) |
| 91 |
12 13 23 89 90
|
syl22anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) |
| 92 |
31 91
|
eqeltrrd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. J ) |
| 93 |
15 5 25
|
lidl1el |
|- ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) -> ( ( 1r ` R ) e. J <-> J = B ) ) |
| 94 |
93
|
biimpa |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( 1r ` R ) e. J ) -> J = B ) |
| 95 |
12 13 92 94
|
syl21anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J = B ) |
| 96 |
38 39 42 6 52 69
|
drnginvrcld |
|- ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( Base ` Q ) ) |
| 97 |
96 51
|
eleqtrrd |
|- ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) ) |
| 98 |
|
elqsi |
|- ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
| 99 |
97 98
|
syl |
|- ( ph -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
| 100 |
95 99
|
r19.29a |
|- ( ph -> J = B ) |