| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qus0g.1 |
|- Q = ( G /s ( G ~QG N ) ) |
| 2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 3 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
| 4 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 5 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
2 6
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 8 |
4 5 7
|
3syl |
|- ( N e. ( NrmSGrp ` G ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 9 |
2 3 4 8
|
quslsm |
|- ( N e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG N ) = ( { ( 0g ` G ) } ( LSSum ` G ) N ) ) |
| 10 |
1 6
|
qus0 |
|- ( N e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG N ) = ( 0g ` Q ) ) |
| 11 |
6 3
|
lsm02 |
|- ( N e. ( SubGrp ` G ) -> ( { ( 0g ` G ) } ( LSSum ` G ) N ) = N ) |
| 12 |
4 11
|
syl |
|- ( N e. ( NrmSGrp ` G ) -> ( { ( 0g ` G ) } ( LSSum ` G ) N ) = N ) |
| 13 |
9 10 12
|
3eqtr3d |
|- ( N e. ( NrmSGrp ` G ) -> ( 0g ` Q ) = N ) |