Step |
Hyp |
Ref |
Expression |
1 |
|
qusima.b |
|- B = ( Base ` G ) |
2 |
|
qusima.q |
|- Q = ( G /s ( G ~QG N ) ) |
3 |
|
qusima.p |
|- .(+) = ( LSSum ` G ) |
4 |
|
qusima.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
5 |
|
qusima.f |
|- F = ( x e. B |-> [ x ] ( G ~QG N ) ) |
6 |
|
qusima.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
7 |
|
qusima.h |
|- ( ph -> H e. S ) |
8 |
|
qusima.s |
|- ( ph -> S C_ ( SubGrp ` G ) ) |
9 |
5
|
reseq1i |
|- ( F |` H ) = ( ( x e. B |-> [ x ] ( G ~QG N ) ) |` H ) |
10 |
8 7
|
sseldd |
|- ( ph -> H e. ( SubGrp ` G ) ) |
11 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ B ) |
12 |
10 11
|
syl |
|- ( ph -> H C_ B ) |
13 |
12
|
resmptd |
|- ( ph -> ( ( x e. B |-> [ x ] ( G ~QG N ) ) |` H ) = ( x e. H |-> [ x ] ( G ~QG N ) ) ) |
14 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
15 |
6 14
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ x e. H ) -> N e. ( SubGrp ` G ) ) |
17 |
12
|
sselda |
|- ( ( ph /\ x e. H ) -> x e. B ) |
18 |
1 3 16 17
|
quslsm |
|- ( ( ph /\ x e. H ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
19 |
18
|
mpteq2dva |
|- ( ph -> ( x e. H |-> [ x ] ( G ~QG N ) ) = ( x e. H |-> ( { x } .(+) N ) ) ) |
20 |
13 19
|
eqtrd |
|- ( ph -> ( ( x e. B |-> [ x ] ( G ~QG N ) ) |` H ) = ( x e. H |-> ( { x } .(+) N ) ) ) |
21 |
9 20
|
eqtr2id |
|- ( ph -> ( x e. H |-> ( { x } .(+) N ) ) = ( F |` H ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ h = H ) -> ( x e. H |-> ( { x } .(+) N ) ) = ( F |` H ) ) |
23 |
22
|
rneqd |
|- ( ( ph /\ h = H ) -> ran ( x e. H |-> ( { x } .(+) N ) ) = ran ( F |` H ) ) |
24 |
|
mpteq1 |
|- ( h = H -> ( x e. h |-> ( { x } .(+) N ) ) = ( x e. H |-> ( { x } .(+) N ) ) ) |
25 |
24
|
rneqd |
|- ( h = H -> ran ( x e. h |-> ( { x } .(+) N ) ) = ran ( x e. H |-> ( { x } .(+) N ) ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ h = H ) -> ran ( x e. h |-> ( { x } .(+) N ) ) = ran ( x e. H |-> ( { x } .(+) N ) ) ) |
27 |
|
df-ima |
|- ( F " H ) = ran ( F |` H ) |
28 |
27
|
a1i |
|- ( ( ph /\ h = H ) -> ( F " H ) = ran ( F |` H ) ) |
29 |
23 26 28
|
3eqtr4d |
|- ( ( ph /\ h = H ) -> ran ( x e. h |-> ( { x } .(+) N ) ) = ( F " H ) ) |
30 |
1
|
fvexi |
|- B e. _V |
31 |
30
|
mptex |
|- ( x e. B |-> [ x ] ( G ~QG N ) ) e. _V |
32 |
5 31
|
eqeltri |
|- F e. _V |
33 |
|
imaexg |
|- ( F e. _V -> ( F " H ) e. _V ) |
34 |
32 33
|
mp1i |
|- ( ph -> ( F " H ) e. _V ) |
35 |
4 29 7 34
|
fvmptd2 |
|- ( ph -> ( E ` H ) = ( F " H ) ) |