Step |
Hyp |
Ref |
Expression |
1 |
|
quslsm.b |
|- B = ( Base ` G ) |
2 |
|
quslsm.p |
|- .(+) = ( LSSum ` G ) |
3 |
|
quslsm.n |
|- ( ph -> S e. ( SubGrp ` G ) ) |
4 |
|
quslsm.s |
|- ( ph -> X e. B ) |
5 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
6 |
3 5
|
syl |
|- ( ph -> G e. Grp ) |
7 |
1
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ B ) |
8 |
3 7
|
syl |
|- ( ph -> S C_ B ) |
9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
|
eqid |
|- ( G ~QG S ) = ( G ~QG S ) |
12 |
1 9 10 11
|
eqgfval |
|- ( ( G e. Grp /\ S C_ B ) -> ( G ~QG S ) = { <. i , j >. | ( { i , j } C_ B /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) } ) |
13 |
6 8 12
|
syl2anc |
|- ( ph -> ( G ~QG S ) = { <. i , j >. | ( { i , j } C_ B /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) } ) |
14 |
|
simpr |
|- ( ( ( ph /\ { i , j } C_ B ) /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) |
15 |
|
oveq2 |
|- ( k = ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) -> ( i ( +g ` G ) k ) = ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) ) |
16 |
15
|
eqeq1d |
|- ( k = ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) -> ( ( i ( +g ` G ) k ) = j <-> ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) = j ) ) |
17 |
16
|
adantl |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) /\ k = ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) -> ( ( i ( +g ` G ) k ) = j <-> ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) = j ) ) |
18 |
6
|
adantr |
|- ( ( ph /\ { i , j } C_ B ) -> G e. Grp ) |
19 |
|
vex |
|- i e. _V |
20 |
|
vex |
|- j e. _V |
21 |
19 20
|
prss |
|- ( ( i e. B /\ j e. B ) <-> { i , j } C_ B ) |
22 |
21
|
bicomi |
|- ( { i , j } C_ B <-> ( i e. B /\ j e. B ) ) |
23 |
22
|
simplbi |
|- ( { i , j } C_ B -> i e. B ) |
24 |
23
|
adantl |
|- ( ( ph /\ { i , j } C_ B ) -> i e. B ) |
25 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
26 |
1 10 25 9
|
grprinv |
|- ( ( G e. Grp /\ i e. B ) -> ( i ( +g ` G ) ( ( invg ` G ) ` i ) ) = ( 0g ` G ) ) |
27 |
18 24 26
|
syl2anc |
|- ( ( ph /\ { i , j } C_ B ) -> ( i ( +g ` G ) ( ( invg ` G ) ` i ) ) = ( 0g ` G ) ) |
28 |
27
|
oveq1d |
|- ( ( ph /\ { i , j } C_ B ) -> ( ( i ( +g ` G ) ( ( invg ` G ) ` i ) ) ( +g ` G ) j ) = ( ( 0g ` G ) ( +g ` G ) j ) ) |
29 |
1 9
|
grpinvcl |
|- ( ( G e. Grp /\ i e. B ) -> ( ( invg ` G ) ` i ) e. B ) |
30 |
18 24 29
|
syl2anc |
|- ( ( ph /\ { i , j } C_ B ) -> ( ( invg ` G ) ` i ) e. B ) |
31 |
22
|
simprbi |
|- ( { i , j } C_ B -> j e. B ) |
32 |
31
|
adantl |
|- ( ( ph /\ { i , j } C_ B ) -> j e. B ) |
33 |
1 10
|
grpass |
|- ( ( G e. Grp /\ ( i e. B /\ ( ( invg ` G ) ` i ) e. B /\ j e. B ) ) -> ( ( i ( +g ` G ) ( ( invg ` G ) ` i ) ) ( +g ` G ) j ) = ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) ) |
34 |
18 24 30 32 33
|
syl13anc |
|- ( ( ph /\ { i , j } C_ B ) -> ( ( i ( +g ` G ) ( ( invg ` G ) ` i ) ) ( +g ` G ) j ) = ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) ) |
35 |
1 10 25
|
grplid |
|- ( ( G e. Grp /\ j e. B ) -> ( ( 0g ` G ) ( +g ` G ) j ) = j ) |
36 |
18 32 35
|
syl2anc |
|- ( ( ph /\ { i , j } C_ B ) -> ( ( 0g ` G ) ( +g ` G ) j ) = j ) |
37 |
28 34 36
|
3eqtr3d |
|- ( ( ph /\ { i , j } C_ B ) -> ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) = j ) |
38 |
37
|
adantr |
|- ( ( ( ph /\ { i , j } C_ B ) /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) -> ( i ( +g ` G ) ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) = j ) |
39 |
14 17 38
|
rspcedvd |
|- ( ( ( ph /\ { i , j } C_ B ) /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) -> E. k e. S ( i ( +g ` G ) k ) = j ) |
40 |
|
oveq2 |
|- ( ( i ( +g ` G ) k ) = j -> ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) = ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) |
41 |
40
|
adantl |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) /\ ( i ( +g ` G ) k ) = j ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) = ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) ) |
42 |
|
simpll |
|- ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) -> ph ) |
43 |
24
|
adantr |
|- ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) -> i e. B ) |
44 |
8
|
adantr |
|- ( ( ph /\ { i , j } C_ B ) -> S C_ B ) |
45 |
44
|
sselda |
|- ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) -> k e. B ) |
46 |
6
|
3ad2ant1 |
|- ( ( ph /\ i e. B /\ k e. B ) -> G e. Grp ) |
47 |
|
simp2 |
|- ( ( ph /\ i e. B /\ k e. B ) -> i e. B ) |
48 |
1 10 25 9
|
grplinv |
|- ( ( G e. Grp /\ i e. B ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) i ) = ( 0g ` G ) ) |
49 |
46 47 48
|
syl2anc |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) i ) = ( 0g ` G ) ) |
50 |
49
|
oveq1d |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( ( ( invg ` G ) ` i ) ( +g ` G ) i ) ( +g ` G ) k ) = ( ( 0g ` G ) ( +g ` G ) k ) ) |
51 |
46 47 29
|
syl2anc |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( invg ` G ) ` i ) e. B ) |
52 |
|
simp3 |
|- ( ( ph /\ i e. B /\ k e. B ) -> k e. B ) |
53 |
1 10
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` i ) e. B /\ i e. B /\ k e. B ) ) -> ( ( ( ( invg ` G ) ` i ) ( +g ` G ) i ) ( +g ` G ) k ) = ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) ) |
54 |
46 51 47 52 53
|
syl13anc |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( ( ( invg ` G ) ` i ) ( +g ` G ) i ) ( +g ` G ) k ) = ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) ) |
55 |
1 10 25
|
grplid |
|- ( ( G e. Grp /\ k e. B ) -> ( ( 0g ` G ) ( +g ` G ) k ) = k ) |
56 |
46 52 55
|
syl2anc |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( 0g ` G ) ( +g ` G ) k ) = k ) |
57 |
50 54 56
|
3eqtr3d |
|- ( ( ph /\ i e. B /\ k e. B ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) = k ) |
58 |
42 43 45 57
|
syl3anc |
|- ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) = k ) |
59 |
58
|
adantr |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) /\ ( i ( +g ` G ) k ) = j ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) ( i ( +g ` G ) k ) ) = k ) |
60 |
41 59
|
eqtr3d |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) /\ ( i ( +g ` G ) k ) = j ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) = k ) |
61 |
|
simplr |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) /\ ( i ( +g ` G ) k ) = j ) -> k e. S ) |
62 |
60 61
|
eqeltrd |
|- ( ( ( ( ph /\ { i , j } C_ B ) /\ k e. S ) /\ ( i ( +g ` G ) k ) = j ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) |
63 |
62
|
r19.29an |
|- ( ( ( ph /\ { i , j } C_ B ) /\ E. k e. S ( i ( +g ` G ) k ) = j ) -> ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) |
64 |
39 63
|
impbida |
|- ( ( ph /\ { i , j } C_ B ) -> ( ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S <-> E. k e. S ( i ( +g ` G ) k ) = j ) ) |
65 |
64
|
pm5.32da |
|- ( ph -> ( ( { i , j } C_ B /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) <-> ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) ) ) |
66 |
65
|
opabbidv |
|- ( ph -> { <. i , j >. | ( { i , j } C_ B /\ ( ( ( invg ` G ) ` i ) ( +g ` G ) j ) e. S ) } = { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } ) |
67 |
13 66
|
eqtrd |
|- ( ph -> ( G ~QG S ) = { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } ) |
68 |
67
|
eceq2d |
|- ( ph -> [ X ] ( G ~QG S ) = [ X ] { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } ) |
69 |
|
eqid |
|- { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } = { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } |
70 |
6
|
grpmndd |
|- ( ph -> G e. Mnd ) |
71 |
1 10 2 69 70 8 4
|
lsmsnorb2 |
|- ( ph -> ( { X } .(+) S ) = [ X ] { <. i , j >. | ( { i , j } C_ B /\ E. k e. S ( i ( +g ` G ) k ) = j ) } ) |
72 |
68 71
|
eqtr4d |
|- ( ph -> [ X ] ( G ~QG S ) = ( { X } .(+) S ) ) |