| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusbas2.1 |
|- B = ( Base ` G ) |
| 2 |
|
qusbas2.2 |
|- .(+) = ( LSSum ` G ) |
| 3 |
|
qusbas2.3 |
|- ( ( ph /\ x e. B ) -> N e. ( SubGrp ` G ) ) |
| 4 |
|
df-qs |
|- ( B /. ( G ~QG N ) ) = { y | E. x e. B y = [ x ] ( G ~QG N ) } |
| 5 |
|
eqid |
|- ( x e. B |-> [ x ] ( G ~QG N ) ) = ( x e. B |-> [ x ] ( G ~QG N ) ) |
| 6 |
5
|
rnmpt |
|- ran ( x e. B |-> [ x ] ( G ~QG N ) ) = { y | E. x e. B y = [ x ] ( G ~QG N ) } |
| 7 |
4 6
|
eqtr4i |
|- ( B /. ( G ~QG N ) ) = ran ( x e. B |-> [ x ] ( G ~QG N ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 9 |
1 2 3 8
|
quslsm |
|- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
| 10 |
9
|
mpteq2dva |
|- ( ph -> ( x e. B |-> [ x ] ( G ~QG N ) ) = ( x e. B |-> ( { x } .(+) N ) ) ) |
| 11 |
10
|
rneqd |
|- ( ph -> ran ( x e. B |-> [ x ] ( G ~QG N ) ) = ran ( x e. B |-> ( { x } .(+) N ) ) ) |
| 12 |
7 11
|
eqtrid |
|- ( ph -> ( B /. ( G ~QG N ) ) = ran ( x e. B |-> ( { x } .(+) N ) ) ) |