Metamath Proof Explorer


Theorem qusbas2

Description: Alternate definition of the group quotient set, as the set of all cosets of the form ( { x } .(+) N ) . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses qusbas2.1 𝐵 = ( Base ‘ 𝐺 )
qusbas2.2 = ( LSSum ‘ 𝐺 )
qusbas2.3 ( ( 𝜑𝑥𝐵 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
Assertion qusbas2 ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥𝐵 ↦ ( { 𝑥 } 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 qusbas2.1 𝐵 = ( Base ‘ 𝐺 )
2 qusbas2.2 = ( LSSum ‘ 𝐺 )
3 qusbas2.3 ( ( 𝜑𝑥𝐵 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
4 df-qs ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) }
5 eqid ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
6 5 rnmpt ran ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) }
7 4 6 eqtr4i ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
8 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
9 1 2 3 8 quslsm ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } 𝑁 ) )
10 9 mpteq2dva ( 𝜑 → ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥𝐵 ↦ ( { 𝑥 } 𝑁 ) ) )
11 10 rneqd ( 𝜑 → ran ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥𝐵 ↦ ( { 𝑥 } 𝑁 ) ) )
12 7 11 eqtrid ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥𝐵 ↦ ( { 𝑥 } 𝑁 ) ) )