Step |
Hyp |
Ref |
Expression |
1 |
|
qusbas2.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
qusbas2.2 |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
qusbas2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
df-qs |
⊢ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) } |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
6 |
5
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) } |
7 |
4 6
|
eqtr4i |
⊢ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
9 |
1 2 3 8
|
quslsm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
10 |
9
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
11 |
10
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
12 |
7 11
|
eqtrid |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |