| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qus0g.1 |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 4 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
2 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 8 |
4 5 7
|
3syl |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 9 |
2 3 4 8
|
quslsm |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) ) |
| 10 |
1 6
|
qus0 |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 0g ‘ 𝑄 ) ) |
| 11 |
6 3
|
lsm02 |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) = 𝑁 ) |
| 12 |
4 11
|
syl |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) = 𝑁 ) |
| 13 |
9 10 12
|
3eqtr3d |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝑄 ) = 𝑁 ) |