Metamath Proof Explorer


Theorem qus0g

Description: The identity element of a quotient group. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypothesis qus0g.1 Q=G/𝑠G~QGN
Assertion qus0g NNrmSGrpG0Q=N

Proof

Step Hyp Ref Expression
1 qus0g.1 Q=G/𝑠G~QGN
2 eqid BaseG=BaseG
3 eqid LSSumG=LSSumG
4 nsgsubg NNrmSGrpGNSubGrpG
5 subgrcl NSubGrpGGGrp
6 eqid 0G=0G
7 2 6 grpidcl GGrp0GBaseG
8 4 5 7 3syl NNrmSGrpG0GBaseG
9 2 3 4 8 quslsm NNrmSGrpG0GG~QGN=0GLSSumGN
10 1 6 qus0 NNrmSGrpG0GG~QGN=0Q
11 6 3 lsm02 NSubGrpG0GLSSumGN=N
12 4 11 syl NNrmSGrpG0GLSSumGN=N
13 9 10 12 3eqtr3d NNrmSGrpG0Q=N