Metamath Proof Explorer


Theorem quslsm

Description: Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses quslsm.b B=BaseG
quslsm.p ˙=LSSumG
quslsm.n φSSubGrpG
quslsm.s φXB
Assertion quslsm φXG~QGS=X˙S

Proof

Step Hyp Ref Expression
1 quslsm.b B=BaseG
2 quslsm.p ˙=LSSumG
3 quslsm.n φSSubGrpG
4 quslsm.s φXB
5 subgrcl SSubGrpGGGrp
6 3 5 syl φGGrp
7 1 subgss SSubGrpGSB
8 3 7 syl φSB
9 eqid invgG=invgG
10 eqid +G=+G
11 eqid G~QGS=G~QGS
12 1 9 10 11 eqgfval GGrpSBG~QGS=ij|ijBinvgGi+GjS
13 6 8 12 syl2anc φG~QGS=ij|ijBinvgGi+GjS
14 simpr φijBinvgGi+GjSinvgGi+GjS
15 oveq2 k=invgGi+Gji+Gk=i+GinvgGi+Gj
16 15 eqeq1d k=invgGi+Gji+Gk=ji+GinvgGi+Gj=j
17 16 adantl φijBinvgGi+GjSk=invgGi+Gji+Gk=ji+GinvgGi+Gj=j
18 6 adantr φijBGGrp
19 vex iV
20 vex jV
21 19 20 prss iBjBijB
22 21 bicomi ijBiBjB
23 22 simplbi ijBiB
24 23 adantl φijBiB
25 eqid 0G=0G
26 1 10 25 9 grprinv GGrpiBi+GinvgGi=0G
27 18 24 26 syl2anc φijBi+GinvgGi=0G
28 27 oveq1d φijBi+GinvgGi+Gj=0G+Gj
29 1 9 grpinvcl GGrpiBinvgGiB
30 18 24 29 syl2anc φijBinvgGiB
31 22 simprbi ijBjB
32 31 adantl φijBjB
33 1 10 grpass GGrpiBinvgGiBjBi+GinvgGi+Gj=i+GinvgGi+Gj
34 18 24 30 32 33 syl13anc φijBi+GinvgGi+Gj=i+GinvgGi+Gj
35 1 10 25 grplid GGrpjB0G+Gj=j
36 18 32 35 syl2anc φijB0G+Gj=j
37 28 34 36 3eqtr3d φijBi+GinvgGi+Gj=j
38 37 adantr φijBinvgGi+GjSi+GinvgGi+Gj=j
39 14 17 38 rspcedvd φijBinvgGi+GjSkSi+Gk=j
40 oveq2 i+Gk=jinvgGi+Gi+Gk=invgGi+Gj
41 40 adantl φijBkSi+Gk=jinvgGi+Gi+Gk=invgGi+Gj
42 simpll φijBkSφ
43 24 adantr φijBkSiB
44 8 adantr φijBSB
45 44 sselda φijBkSkB
46 6 3ad2ant1 φiBkBGGrp
47 simp2 φiBkBiB
48 1 10 25 9 grplinv GGrpiBinvgGi+Gi=0G
49 46 47 48 syl2anc φiBkBinvgGi+Gi=0G
50 49 oveq1d φiBkBinvgGi+Gi+Gk=0G+Gk
51 46 47 29 syl2anc φiBkBinvgGiB
52 simp3 φiBkBkB
53 1 10 grpass GGrpinvgGiBiBkBinvgGi+Gi+Gk=invgGi+Gi+Gk
54 46 51 47 52 53 syl13anc φiBkBinvgGi+Gi+Gk=invgGi+Gi+Gk
55 1 10 25 grplid GGrpkB0G+Gk=k
56 46 52 55 syl2anc φiBkB0G+Gk=k
57 50 54 56 3eqtr3d φiBkBinvgGi+Gi+Gk=k
58 42 43 45 57 syl3anc φijBkSinvgGi+Gi+Gk=k
59 58 adantr φijBkSi+Gk=jinvgGi+Gi+Gk=k
60 41 59 eqtr3d φijBkSi+Gk=jinvgGi+Gj=k
61 simplr φijBkSi+Gk=jkS
62 60 61 eqeltrd φijBkSi+Gk=jinvgGi+GjS
63 62 r19.29an φijBkSi+Gk=jinvgGi+GjS
64 39 63 impbida φijBinvgGi+GjSkSi+Gk=j
65 64 pm5.32da φijBinvgGi+GjSijBkSi+Gk=j
66 65 opabbidv φij|ijBinvgGi+GjS=ij|ijBkSi+Gk=j
67 13 66 eqtrd φG~QGS=ij|ijBkSi+Gk=j
68 67 eceq2d φXG~QGS=Xij|ijBkSi+Gk=j
69 eqid ij|ijBkSi+Gk=j=ij|ijBkSi+Gk=j
70 6 grpmndd φGMnd
71 1 10 2 69 70 8 4 lsmsnorb2 φX˙S=Xij|ijBkSi+Gk=j
72 68 71 eqtr4d φXG~QGS=X˙S