| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quslsm.b |
|
| 2 |
|
quslsm.p |
|
| 3 |
|
quslsm.n |
|
| 4 |
|
quslsm.s |
|
| 5 |
|
subgrcl |
|
| 6 |
3 5
|
syl |
|
| 7 |
1
|
subgss |
|
| 8 |
3 7
|
syl |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 9 10 11
|
eqgfval |
|
| 13 |
6 8 12
|
syl2anc |
|
| 14 |
|
simpr |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
16
|
adantl |
|
| 18 |
6
|
adantr |
|
| 19 |
|
vex |
|
| 20 |
|
vex |
|
| 21 |
19 20
|
prss |
|
| 22 |
21
|
bicomi |
|
| 23 |
22
|
simplbi |
|
| 24 |
23
|
adantl |
|
| 25 |
|
eqid |
|
| 26 |
1 10 25 9
|
grprinv |
|
| 27 |
18 24 26
|
syl2anc |
|
| 28 |
27
|
oveq1d |
|
| 29 |
1 9
|
grpinvcl |
|
| 30 |
18 24 29
|
syl2anc |
|
| 31 |
22
|
simprbi |
|
| 32 |
31
|
adantl |
|
| 33 |
1 10
|
grpass |
|
| 34 |
18 24 30 32 33
|
syl13anc |
|
| 35 |
1 10 25
|
grplid |
|
| 36 |
18 32 35
|
syl2anc |
|
| 37 |
28 34 36
|
3eqtr3d |
|
| 38 |
37
|
adantr |
|
| 39 |
14 17 38
|
rspcedvd |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
adantl |
|
| 42 |
|
simpll |
|
| 43 |
24
|
adantr |
|
| 44 |
8
|
adantr |
|
| 45 |
44
|
sselda |
|
| 46 |
6
|
3ad2ant1 |
|
| 47 |
|
simp2 |
|
| 48 |
1 10 25 9
|
grplinv |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
49
|
oveq1d |
|
| 51 |
46 47 29
|
syl2anc |
|
| 52 |
|
simp3 |
|
| 53 |
1 10
|
grpass |
|
| 54 |
46 51 47 52 53
|
syl13anc |
|
| 55 |
1 10 25
|
grplid |
|
| 56 |
46 52 55
|
syl2anc |
|
| 57 |
50 54 56
|
3eqtr3d |
|
| 58 |
42 43 45 57
|
syl3anc |
|
| 59 |
58
|
adantr |
|
| 60 |
41 59
|
eqtr3d |
|
| 61 |
|
simplr |
|
| 62 |
60 61
|
eqeltrd |
|
| 63 |
62
|
r19.29an |
|
| 64 |
39 63
|
impbida |
|
| 65 |
64
|
pm5.32da |
|
| 66 |
65
|
opabbidv |
|
| 67 |
13 66
|
eqtrd |
|
| 68 |
67
|
eceq2d |
|
| 69 |
|
eqid |
|
| 70 |
6
|
grpmndd |
|
| 71 |
1 10 2 69 70 8 4
|
lsmsnorb2 |
|
| 72 |
68 71
|
eqtr4d |
|