Step |
Hyp |
Ref |
Expression |
1 |
|
quslsm.b |
|
2 |
|
quslsm.p |
|
3 |
|
quslsm.n |
|
4 |
|
quslsm.s |
|
5 |
|
subgrcl |
|
6 |
3 5
|
syl |
|
7 |
1
|
subgss |
|
8 |
3 7
|
syl |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
1 9 10 11
|
eqgfval |
|
13 |
6 8 12
|
syl2anc |
|
14 |
|
simpr |
|
15 |
|
oveq2 |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
adantl |
|
18 |
6
|
adantr |
|
19 |
|
vex |
|
20 |
|
vex |
|
21 |
19 20
|
prss |
|
22 |
21
|
bicomi |
|
23 |
22
|
simplbi |
|
24 |
23
|
adantl |
|
25 |
|
eqid |
|
26 |
1 10 25 9
|
grprinv |
|
27 |
18 24 26
|
syl2anc |
|
28 |
27
|
oveq1d |
|
29 |
1 9
|
grpinvcl |
|
30 |
18 24 29
|
syl2anc |
|
31 |
22
|
simprbi |
|
32 |
31
|
adantl |
|
33 |
1 10
|
grpass |
|
34 |
18 24 30 32 33
|
syl13anc |
|
35 |
1 10 25
|
grplid |
|
36 |
18 32 35
|
syl2anc |
|
37 |
28 34 36
|
3eqtr3d |
|
38 |
37
|
adantr |
|
39 |
14 17 38
|
rspcedvd |
|
40 |
|
oveq2 |
|
41 |
40
|
adantl |
|
42 |
|
simpll |
|
43 |
24
|
adantr |
|
44 |
8
|
adantr |
|
45 |
44
|
sselda |
|
46 |
6
|
3ad2ant1 |
|
47 |
|
simp2 |
|
48 |
1 10 25 9
|
grplinv |
|
49 |
46 47 48
|
syl2anc |
|
50 |
49
|
oveq1d |
|
51 |
46 47 29
|
syl2anc |
|
52 |
|
simp3 |
|
53 |
1 10
|
grpass |
|
54 |
46 51 47 52 53
|
syl13anc |
|
55 |
1 10 25
|
grplid |
|
56 |
46 52 55
|
syl2anc |
|
57 |
50 54 56
|
3eqtr3d |
|
58 |
42 43 45 57
|
syl3anc |
|
59 |
58
|
adantr |
|
60 |
41 59
|
eqtr3d |
|
61 |
|
simplr |
|
62 |
60 61
|
eqeltrd |
|
63 |
62
|
r19.29an |
|
64 |
39 63
|
impbida |
|
65 |
64
|
pm5.32da |
|
66 |
65
|
opabbidv |
|
67 |
13 66
|
eqtrd |
|
68 |
67
|
eceq2d |
|
69 |
|
eqid |
|
70 |
6
|
grpmndd |
|
71 |
1 10 2 69 70 8 4
|
lsmsnorb2 |
|
72 |
68 71
|
eqtr4d |
|