Step |
Hyp |
Ref |
Expression |
1 |
|
quslsm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
quslsm.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
quslsm.n |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
quslsm.s |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
7 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
9 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) |
12 |
1 9 10 11
|
eqgfval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ~QG 𝑆 ) = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) } ) |
13 |
6 8 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑆 ) = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) } ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) |
15 |
|
oveq2 |
⊢ ( 𝑘 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) → ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑘 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) → ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ↔ ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) = 𝑗 ) ) |
17 |
16
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) ∧ 𝑘 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) → ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ↔ ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) = 𝑗 ) ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → 𝐺 ∈ Grp ) |
19 |
|
vex |
⊢ 𝑖 ∈ V |
20 |
|
vex |
⊢ 𝑗 ∈ V |
21 |
19 20
|
prss |
⊢ ( ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ↔ { 𝑖 , 𝑗 } ⊆ 𝐵 ) |
22 |
21
|
bicomi |
⊢ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ↔ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) |
23 |
22
|
simplbi |
⊢ ( { 𝑖 , 𝑗 } ⊆ 𝐵 → 𝑖 ∈ 𝐵 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → 𝑖 ∈ 𝐵 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
26 |
1 10 25 9
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵 ) → ( 𝑖 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 0g ‘ 𝐺 ) ) |
27 |
18 24 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( 𝑖 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 0g ‘ 𝐺 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( ( 𝑖 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) 𝑗 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑗 ) ) |
29 |
1 9
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐵 ) |
30 |
18 24 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐵 ) |
31 |
22
|
simprbi |
⊢ ( { 𝑖 , 𝑗 } ⊆ 𝐵 → 𝑗 ∈ 𝐵 ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → 𝑗 ∈ 𝐵 ) |
33 |
1 10
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑖 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( ( 𝑖 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) 𝑗 ) = ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) ) |
34 |
18 24 30 32 33
|
syl13anc |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( ( 𝑖 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) 𝑗 ) = ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) ) |
35 |
1 10 25
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑗 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑗 ) = 𝑗 ) |
36 |
18 32 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑗 ) = 𝑗 ) |
37 |
28 34 36
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) = 𝑗 ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) → ( 𝑖 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) = 𝑗 ) |
39 |
14 17 38
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) → ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) |
40 |
|
oveq2 |
⊢ ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ) |
42 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) → 𝜑 ) |
43 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) → 𝑖 ∈ 𝐵 ) |
44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
45 |
44
|
sselda |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ 𝐵 ) |
46 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
47 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → 𝑖 ∈ 𝐵 ) |
48 |
1 10 25 9
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑖 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑖 ) = ( 0g ‘ 𝐺 ) ) |
49 |
46 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑖 ) = ( 0g ‘ 𝐺 ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑖 ) ( +g ‘ 𝐺 ) 𝑘 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑘 ) ) |
51 |
46 47 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐵 ) |
52 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
53 |
1 10
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑖 ) ( +g ‘ 𝐺 ) 𝑘 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) ) |
54 |
46 51 47 52 53
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑖 ) ( +g ‘ 𝐺 ) 𝑘 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) ) |
55 |
1 10 25
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑘 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑘 ) = 𝑘 ) |
56 |
46 52 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑘 ) = 𝑘 ) |
57 |
50 54 56
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ∧ 𝑘 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) = 𝑘 ) |
58 |
42 43 45 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) = 𝑘 ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) ) = 𝑘 ) |
60 |
41 59
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) = 𝑘 ) |
61 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → 𝑘 ∈ 𝑆 ) |
62 |
60 61
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) |
63 |
62
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) |
64 |
39 63
|
impbida |
⊢ ( ( 𝜑 ∧ { 𝑖 , 𝑗 } ⊆ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ↔ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) ) |
65 |
64
|
pm5.32da |
⊢ ( 𝜑 → ( ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) ↔ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) ) ) |
66 |
65
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑖 ) ( +g ‘ 𝐺 ) 𝑗 ) ∈ 𝑆 ) } = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } ) |
67 |
13 66
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑆 ) = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } ) |
68 |
67
|
eceq2d |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) = [ 𝑋 ] { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } ) |
69 |
|
eqid |
⊢ { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } = { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } |
70 |
6
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
71 |
1 10 2 69 70 8 4
|
lsmsnorb2 |
⊢ ( 𝜑 → ( { 𝑋 } ⊕ 𝑆 ) = [ 𝑋 ] { 〈 𝑖 , 𝑗 〉 ∣ ( { 𝑖 , 𝑗 } ⊆ 𝐵 ∧ ∃ 𝑘 ∈ 𝑆 ( 𝑖 ( +g ‘ 𝐺 ) 𝑘 ) = 𝑗 ) } ) |
72 |
68 71
|
eqtr4d |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) = ( { 𝑋 } ⊕ 𝑆 ) ) |