Metamath Proof Explorer


Theorem qusima

Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses qusima.b 𝐵 = ( Base ‘ 𝐺 )
qusima.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
qusima.p = ( LSSum ‘ 𝐺 )
qusima.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
qusima.f 𝐹 = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
qusima.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
qusima.h ( 𝜑𝐻𝑆 )
qusima.s ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
Assertion qusima ( 𝜑 → ( 𝐸𝐻 ) = ( 𝐹𝐻 ) )

Proof

Step Hyp Ref Expression
1 qusima.b 𝐵 = ( Base ‘ 𝐺 )
2 qusima.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
3 qusima.p = ( LSSum ‘ 𝐺 )
4 qusima.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
5 qusima.f 𝐹 = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
6 qusima.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
7 qusima.h ( 𝜑𝐻𝑆 )
8 qusima.s ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
9 5 reseq1i ( 𝐹𝐻 ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 )
10 8 7 sseldd ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
11 1 subgss ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻𝐵 )
12 10 11 syl ( 𝜑𝐻𝐵 )
13 12 resmptd ( 𝜑 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) )
14 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
15 6 14 syl ( 𝜑𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
16 15 adantr ( ( 𝜑𝑥𝐻 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
17 12 sselda ( ( 𝜑𝑥𝐻 ) → 𝑥𝐵 )
18 1 3 16 17 quslsm ( ( 𝜑𝑥𝐻 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } 𝑁 ) )
19 18 mpteq2dva ( 𝜑 → ( 𝑥𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) )
20 13 19 eqtrd ( 𝜑 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) )
21 9 20 eqtr2id ( 𝜑 → ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝐹𝐻 ) )
22 21 adantr ( ( 𝜑 = 𝐻 ) → ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝐹𝐻 ) )
23 22 rneqd ( ( 𝜑 = 𝐻 ) → ran ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) = ran ( 𝐹𝐻 ) )
24 mpteq1 ( = 𝐻 → ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) )
25 24 rneqd ( = 𝐻 → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ran ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) )
26 25 adantl ( ( 𝜑 = 𝐻 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ran ( 𝑥𝐻 ↦ ( { 𝑥 } 𝑁 ) ) )
27 df-ima ( 𝐹𝐻 ) = ran ( 𝐹𝐻 )
28 27 a1i ( ( 𝜑 = 𝐻 ) → ( 𝐹𝐻 ) = ran ( 𝐹𝐻 ) )
29 23 26 28 3eqtr4d ( ( 𝜑 = 𝐻 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝐹𝐻 ) )
30 1 fvexi 𝐵 ∈ V
31 30 mptex ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V
32 5 31 eqeltri 𝐹 ∈ V
33 imaexg ( 𝐹 ∈ V → ( 𝐹𝐻 ) ∈ V )
34 32 33 mp1i ( 𝜑 → ( 𝐹𝐻 ) ∈ V )
35 4 29 7 34 fvmptd2 ( 𝜑 → ( 𝐸𝐻 ) = ( 𝐹𝐻 ) )