Step |
Hyp |
Ref |
Expression |
1 |
|
qusima.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
qusima.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
3 |
|
qusima.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
qusima.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
5 |
|
qusima.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
6 |
|
qusima.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
7 |
|
qusima.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑆 ) |
8 |
|
qusima.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
9 |
5
|
reseq1i |
⊢ ( 𝐹 ↾ 𝐻 ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) |
10 |
8 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
11 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝐵 ) |
13 |
12
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥 ∈ 𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
14 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝐵 ) |
18 |
1 3 16 17
|
quslsm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
21 |
9 20
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 ↾ 𝐻 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 ↾ 𝐻 ) ) |
23 |
22
|
rneqd |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝐹 ↾ 𝐻 ) ) |
24 |
|
mpteq1 |
⊢ ( ℎ = 𝐻 → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
25 |
24
|
rneqd |
⊢ ( ℎ = 𝐻 → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
27 |
|
df-ima |
⊢ ( 𝐹 “ 𝐻 ) = ran ( 𝐹 ↾ 𝐻 ) |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( 𝐹 “ 𝐻 ) = ran ( 𝐹 ↾ 𝐻 ) ) |
29 |
23 26 28
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 “ 𝐻 ) ) |
30 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
31 |
30
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V |
32 |
5 31
|
eqeltri |
⊢ 𝐹 ∈ V |
33 |
|
imaexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 “ 𝐻 ) ∈ V ) |
34 |
32 33
|
mp1i |
⊢ ( 𝜑 → ( 𝐹 “ 𝐻 ) ∈ V ) |
35 |
4 29 7 34
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐻 ) = ( 𝐹 “ 𝐻 ) ) |