| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusima.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
qusima.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 3 |
|
qusima.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 4 |
|
qusima.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 5 |
|
qusima.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 6 |
|
qusima.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 7 |
|
qusima.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑆 ) |
| 8 |
|
qusima.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
5
|
reseq1i |
⊢ ( 𝐹 ↾ 𝐻 ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) |
| 10 |
8 7
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝐵 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝐵 ) |
| 13 |
12
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥 ∈ 𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 14 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝐵 ) |
| 18 |
1 3 16 17
|
quslsm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐻 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ↾ 𝐻 ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 21 |
9 20
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 ↾ 𝐻 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 ↾ 𝐻 ) ) |
| 23 |
22
|
rneqd |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝐹 ↾ 𝐻 ) ) |
| 24 |
|
mpteq1 |
⊢ ( ℎ = 𝐻 → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 25 |
24
|
rneqd |
⊢ ( ℎ = 𝐻 → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ 𝐻 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 27 |
|
df-ima |
⊢ ( 𝐹 “ 𝐻 ) = ran ( 𝐹 ↾ 𝐻 ) |
| 28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( 𝐹 “ 𝐻 ) = ran ( 𝐹 ↾ 𝐻 ) ) |
| 29 |
23 26 28
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝐹 “ 𝐻 ) ) |
| 30 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 31 |
30
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V |
| 32 |
5 31
|
eqeltri |
⊢ 𝐹 ∈ V |
| 33 |
|
imaexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 “ 𝐻 ) ∈ V ) |
| 34 |
32 33
|
mp1i |
⊢ ( 𝜑 → ( 𝐹 “ 𝐻 ) ∈ V ) |
| 35 |
4 29 7 34
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐻 ) = ( 𝐹 “ 𝐻 ) ) |