| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqus0.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 3 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 6 |
4 5
|
lsm02 |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) = 𝑁 ) |
| 7 |
2 3 6
|
3syl |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) = 𝑁 ) |
| 8 |
1 4
|
qus0 |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 0g ‘ 𝑄 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 0g ‘ 𝑄 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 13 |
3 12
|
syl |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝐺 ∈ Grp ) |
| 15 |
10 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 17 |
10 5 11 16
|
quslsm |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) ) |
| 18 |
9 17
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 0g ‘ 𝑄 ) = ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 20 |
19
|
subg0cl |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝑄 ) → ( 0g ‘ 𝑄 ) ∈ 𝐹 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 0g ‘ 𝑄 ) ∈ 𝐹 ) |
| 22 |
18 21
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → ( { ( 0g ‘ 𝐺 ) } ( LSSum ‘ 𝐺 ) 𝑁 ) ∈ 𝐹 ) |
| 23 |
7 22
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝐹 ) |