| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsgmgclem.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nsgmgclem.q | ⊢ 𝑄  =  ( 𝐺  /s  ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 3 |  | nsgmgclem.p | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 4 |  | nsgmgclem.n | ⊢ ( 𝜑  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | nsgmgclem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SubGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐺  ↾s  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  =  ( 𝐺  ↾s  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ⊆  𝐵 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ⊆  𝐵 ) | 
						
							| 11 | 10 1 | sseqtrdi | ⊢ ( 𝜑  →  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 12 |  | sneq | ⊢ ( 𝑎  =  ( 0g ‘ 𝐺 )  →  { 𝑎 }  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑎  =  ( 0g ‘ 𝐺 )  →  ( { 𝑎 }  ⊕  𝑁 )  =  ( { ( 0g ‘ 𝐺 ) }  ⊕  𝑁 ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑎  =  ( 0g ‘ 𝐺 )  →  ( ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹  ↔  ( { ( 0g ‘ 𝐺 ) }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 15 |  | nsgsubg | ⊢ ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 17 |  | subgrcl | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 20 | 1 19 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 21 | 18 20 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 22 | 19 3 | lsm02 | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  ( { ( 0g ‘ 𝐺 ) }  ⊕  𝑁 )  =  𝑁 ) | 
						
							| 23 | 16 22 | syl | ⊢ ( 𝜑  →  ( { ( 0g ‘ 𝐺 ) }  ⊕  𝑁 )  =  𝑁 ) | 
						
							| 24 | 2 | nsgqus0 | ⊢ ( ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝐹  ∈  ( SubGrp ‘ 𝑄 ) )  →  𝑁  ∈  𝐹 ) | 
						
							| 25 | 4 5 24 | syl2anc | ⊢ ( 𝜑  →  𝑁  ∈  𝐹 ) | 
						
							| 26 | 23 25 | eqeltrd | ⊢ ( 𝜑  →  ( { ( 0g ‘ 𝐺 ) }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 27 | 14 21 26 | elrabd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 28 |  | sneq | ⊢ ( 𝑎  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  →  { 𝑎 }  =  { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑎  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  →  ( { 𝑎 }  ⊕  𝑁 )  =  ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) }  ⊕  𝑁 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑎  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  →  ( ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹  ↔  ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 31 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝐺  ∈  Grp ) | 
						
							| 32 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  →  𝑥  ∈  𝐵 ) | 
						
							| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝑥  ∈  𝐵 ) | 
						
							| 34 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  →  𝑦  ∈  𝐵 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝑦  ∈  𝐵 ) | 
						
							| 36 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 37 | 1 36 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 38 | 31 33 35 37 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 39 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 40 | 1 3 39 38 | quslsm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 )  =  ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) }  ⊕  𝑁 ) ) | 
						
							| 41 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝑁  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 42 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 43 | 2 1 36 42 | qusadd | ⊢ ( ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 44 | 41 33 35 43 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 45 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  𝐹  ∈  ( SubGrp ‘ 𝑄 ) ) | 
						
							| 46 | 1 3 39 33 | quslsm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ 𝑥 ] ( 𝐺  ~QG  𝑁 )  =  ( { 𝑥 }  ⊕  𝑁 ) ) | 
						
							| 47 |  | sneq | ⊢ ( 𝑎  =  𝑥  →  { 𝑎 }  =  { 𝑥 } ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑎  =  𝑥  →  ( { 𝑎 }  ⊕  𝑁 )  =  ( { 𝑥 }  ⊕  𝑁 ) ) | 
						
							| 49 | 48 | eleq1d | ⊢ ( 𝑎  =  𝑥  →  ( ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹  ↔  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 50 | 49 | elrab | ⊢ ( 𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ↔  ( 𝑥  ∈  𝐵  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 51 | 50 | simprbi | ⊢ ( 𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  →  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 53 | 46 52 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ 𝑥 ] ( 𝐺  ~QG  𝑁 )  ∈  𝐹 ) | 
						
							| 54 | 1 3 39 35 | quslsm | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ 𝑦 ] ( 𝐺  ~QG  𝑁 )  =  ( { 𝑦 }  ⊕  𝑁 ) ) | 
						
							| 55 |  | sneq | ⊢ ( 𝑎  =  𝑦  →  { 𝑎 }  =  { 𝑦 } ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝑎  =  𝑦  →  ( { 𝑎 }  ⊕  𝑁 )  =  ( { 𝑦 }  ⊕  𝑁 ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( 𝑎  =  𝑦  →  ( ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹  ↔  ( { 𝑦 }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 58 | 57 | elrab | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ↔  ( 𝑦  ∈  𝐵  ∧  ( { 𝑦 }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 59 | 58 | simprbi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  →  ( { 𝑦 }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( { 𝑦 }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 61 | 54 60 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ 𝑦 ] ( 𝐺  ~QG  𝑁 )  ∈  𝐹 ) | 
						
							| 62 | 42 | subgcl | ⊢ ( ( 𝐹  ∈  ( SubGrp ‘ 𝑄 )  ∧  [ 𝑥 ] ( 𝐺  ~QG  𝑁 )  ∈  𝐹  ∧  [ 𝑦 ] ( 𝐺  ~QG  𝑁 )  ∈  𝐹 )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  ∈  𝐹 ) | 
						
							| 63 | 45 53 61 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺  ~QG  𝑁 ) )  ∈  𝐹 ) | 
						
							| 64 | 44 63 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺  ~QG  𝑁 )  ∈  𝐹 ) | 
						
							| 65 | 40 64 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 66 | 30 38 65 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 67 | 66 | 3impa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ∧  𝑦  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 68 |  | sneq | ⊢ ( 𝑎  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  { 𝑎 }  =  { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑎  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( { 𝑎 }  ⊕  𝑁 )  =  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 ) ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑎  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹  ↔  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 )  ∈  𝐹 ) ) | 
						
							| 71 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 72 | 1 71 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 73 | 18 72 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 75 |  | eqid | ⊢ ( invg ‘ 𝑄 )  =  ( invg ‘ 𝑄 ) | 
						
							| 76 | 2 1 71 75 | qusinv | ⊢ ( ( 𝑁  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 77 | 4 76 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  =  [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺  ~QG  𝑁 ) ) | 
						
							| 78 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 80 | 1 3 78 79 | quslsm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  [ 𝑥 ] ( 𝐺  ~QG  𝑁 )  =  ( { 𝑥 }  ⊕  𝑁 ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺  ~QG  𝑁 ) )  =  ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 }  ⊕  𝑁 ) ) ) | 
						
							| 82 | 1 3 78 73 | quslsm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺  ~QG  𝑁 )  =  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 ) ) | 
						
							| 83 | 77 81 82 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 }  ⊕  𝑁 ) )  =  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 }  ⊕  𝑁 ) )  =  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 ) ) | 
						
							| 85 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  𝐹  ∈  ( SubGrp ‘ 𝑄 ) ) | 
						
							| 86 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 87 | 75 | subginvcl | ⊢ ( ( 𝐹  ∈  ( SubGrp ‘ 𝑄 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 }  ⊕  𝑁 ) )  ∈  𝐹 ) | 
						
							| 88 | 85 86 87 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 }  ⊕  𝑁 ) )  ∈  𝐹 ) | 
						
							| 89 | 84 88 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) }  ⊕  𝑁 )  ∈  𝐹 ) | 
						
							| 90 | 70 74 89 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 91 | 90 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( { 𝑥 }  ⊕  𝑁 )  ∈  𝐹 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 92 | 50 91 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 } ) | 
						
							| 93 | 6 7 8 11 27 67 92 18 | issubgrpd2 | ⊢ ( 𝜑  →  { 𝑎  ∈  𝐵  ∣  ( { 𝑎 }  ⊕  𝑁 )  ∈  𝐹 }  ∈  ( SubGrp ‘ 𝐺 ) ) |