Step |
Hyp |
Ref |
Expression |
1 |
|
nsgmgclem.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nsgmgclem.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
3 |
|
nsgmgclem.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
nsgmgclem.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
5 |
|
nsgmgclem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐺 ↾s { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) = ( 𝐺 ↾s { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
9 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ⊆ 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ⊆ 𝐵 ) |
11 |
10 1
|
sseqtrdi |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ⊆ ( Base ‘ 𝐺 ) ) |
12 |
|
sneq |
⊢ ( 𝑎 = ( 0g ‘ 𝐺 ) → { 𝑎 } = { ( 0g ‘ 𝐺 ) } ) |
13 |
12
|
oveq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝐺 ) → ( { 𝑎 } ⊕ 𝑁 ) = ( { ( 0g ‘ 𝐺 ) } ⊕ 𝑁 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝐺 ) → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 ↔ ( { ( 0g ‘ 𝐺 ) } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
15 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
20 |
1 19
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
21 |
18 20
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
22 |
19 3
|
lsm02 |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( { ( 0g ‘ 𝐺 ) } ⊕ 𝑁 ) = 𝑁 ) |
23 |
16 22
|
syl |
⊢ ( 𝜑 → ( { ( 0g ‘ 𝐺 ) } ⊕ 𝑁 ) = 𝑁 ) |
24 |
2
|
nsgqus0 |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝐹 ) |
25 |
4 5 24
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ∈ 𝐹 ) |
26 |
23 25
|
eqeltrd |
⊢ ( 𝜑 → ( { ( 0g ‘ 𝐺 ) } ⊕ 𝑁 ) ∈ 𝐹 ) |
27 |
14 21 26
|
elrabd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
28 |
|
sneq |
⊢ ( 𝑎 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → { 𝑎 } = { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ) |
29 |
28
|
oveq1d |
⊢ ( 𝑎 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( { 𝑎 } ⊕ 𝑁 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑎 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 ↔ ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
31 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝐺 ∈ Grp ) |
32 |
|
elrabi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } → 𝑥 ∈ 𝐵 ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝑥 ∈ 𝐵 ) |
34 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } → 𝑦 ∈ 𝐵 ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝑦 ∈ 𝐵 ) |
36 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
37 |
1 36
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
38 |
31 33 35 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
39 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
40 |
1 3 39 38
|
quslsm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) |
41 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
42 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
43 |
2 1 36 42
|
qusadd |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
44 |
41 33 35 43
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
45 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) |
46 |
1 3 39 33
|
quslsm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
47 |
|
sneq |
⊢ ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } ) |
48 |
47
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
49 |
48
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 ↔ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
50 |
49
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
51 |
50
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) |
52 |
51
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) |
53 |
46 52
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ 𝐹 ) |
54 |
1 3 39 35
|
quslsm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑦 } ⊕ 𝑁 ) ) |
55 |
|
sneq |
⊢ ( 𝑎 = 𝑦 → { 𝑎 } = { 𝑦 } ) |
56 |
55
|
oveq1d |
⊢ ( 𝑎 = 𝑦 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑦 } ⊕ 𝑁 ) ) |
57 |
56
|
eleq1d |
⊢ ( 𝑎 = 𝑦 → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 ↔ ( { 𝑦 } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
58 |
57
|
elrab |
⊢ ( 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ↔ ( 𝑦 ∈ 𝐵 ∧ ( { 𝑦 } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
59 |
58
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } → ( { 𝑦 } ⊕ 𝑁 ) ∈ 𝐹 ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( { 𝑦 } ⊕ 𝑁 ) ∈ 𝐹 ) |
61 |
54 60
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ∈ 𝐹 ) |
62 |
42
|
subgcl |
⊢ ( ( 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ∧ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ 𝐹 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ∈ 𝐹 ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) ∈ 𝐹 ) |
63 |
45 53 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) ∈ 𝐹 ) |
64 |
44 63
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ∈ 𝐹 ) |
65 |
40 64
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ∈ 𝐹 ) |
66 |
30 38 65
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
67 |
66
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ∧ 𝑦 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
68 |
|
sneq |
⊢ ( 𝑎 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → { 𝑎 } = { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
69 |
68
|
oveq1d |
⊢ ( 𝑎 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( { 𝑎 } ⊕ 𝑁 ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑎 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 ↔ ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ∈ 𝐹 ) ) |
71 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
72 |
1 71
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
73 |
18 72
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
75 |
|
eqid |
⊢ ( invg ‘ 𝑄 ) = ( invg ‘ 𝑄 ) |
76 |
2 1 71 75
|
qusinv |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
77 |
4 76
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
78 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
80 |
1 3 78 79
|
quslsm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
81 |
80
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
82 |
1 3 78 73
|
quslsm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
83 |
77 81 82
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 } ⊕ 𝑁 ) ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 } ⊕ 𝑁 ) ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
85 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ) |
86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) |
87 |
75
|
subginvcl |
⊢ ( ( 𝐹 ∈ ( SubGrp ‘ 𝑄 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝐹 ) |
88 |
85 86 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( ( invg ‘ 𝑄 ) ‘ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝐹 ) |
89 |
84 88
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ∈ 𝐹 ) |
90 |
70 74 89
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
91 |
90
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝐹 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
92 |
50 91
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ) |
93 |
6 7 8 11 27 67 92 18
|
issubgrpd2 |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝐹 } ∈ ( SubGrp ‘ 𝐺 ) ) |