Step |
Hyp |
Ref |
Expression |
1 |
|
nsgmgc.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nsgmgc.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
3 |
|
nsgmgc.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
4 |
|
nsgmgc.j |
⊢ 𝐽 = ( 𝑉 MGalConn 𝑊 ) |
5 |
|
nsgmgc.v |
⊢ 𝑉 = ( toInc ‘ 𝑆 ) |
6 |
|
nsgmgc.w |
⊢ 𝑊 = ( toInc ‘ 𝑇 ) |
7 |
|
nsgmgc.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
8 |
|
nsgmgc.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
9 |
|
nsgmgc.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
10 |
|
nsgmgc.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
11 |
|
nsgmgc.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
12 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
13 |
|
vex |
⊢ ℎ ∈ V |
14 |
13
|
mptex |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V |
15 |
14
|
rnex |
⊢ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V ) |
17 |
12 16 9
|
fnmptd |
⊢ ( 𝜑 → 𝐸 Fn 𝑆 ) |
18 |
|
mpteq1 |
⊢ ( ℎ = 𝑘 → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ 𝑘 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
19 |
18
|
rneqd |
⊢ ( ℎ = 𝑘 → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ 𝑘 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
20 |
19
|
cbvmptv |
⊢ ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) = ( 𝑘 ∈ 𝑆 ↦ ran ( 𝑥 ∈ 𝑘 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
21 |
9 20
|
eqtri |
⊢ 𝐸 = ( 𝑘 ∈ 𝑆 ↦ ran ( 𝑥 ∈ 𝑘 ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
23 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ℎ ∈ 𝑆 ) |
25 |
2
|
ssrab3 |
⊢ 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
27 |
1 7 8 21 22 23 24 26
|
qusima |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( 𝐸 ‘ ℎ ) = ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ℎ ) ) |
28 |
1 7 22
|
qusghm |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) ) |
29 |
23 28
|
syl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) ) |
30 |
25
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ℎ ∈ ( SubGrp ‘ 𝐺 ) ) |
32 |
|
ghmima |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ℎ ) ∈ ( SubGrp ‘ 𝑄 ) ) |
33 |
29 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ℎ ) ∈ ( SubGrp ‘ 𝑄 ) ) |
34 |
27 33
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( 𝐸 ‘ ℎ ) ∈ ( SubGrp ‘ 𝑄 ) ) |
35 |
34 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( 𝐸 ‘ ℎ ) ∈ 𝑇 ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ ℎ ∈ 𝑆 ( 𝐸 ‘ ℎ ) ∈ 𝑇 ) |
37 |
|
ffnfv |
⊢ ( 𝐸 : 𝑆 ⟶ 𝑇 ↔ ( 𝐸 Fn 𝑆 ∧ ∀ ℎ ∈ 𝑆 ( 𝐸 ‘ ℎ ) ∈ 𝑇 ) ) |
38 |
17 36 37
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 : 𝑆 ⟶ 𝑇 ) |
39 |
|
sseq2 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑁 ⊆ ℎ ↔ 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
40 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝑇 ) |
42 |
41 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
43 |
1 7 8 40 42
|
nsgmgclem |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) |
44 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
45 |
11 44
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
46 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝐵 ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐵 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ 𝐵 ) |
49 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
50 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
51 |
8
|
grplsmid |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
53 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
54 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
55 |
7
|
nsgqus0 |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝑓 ) |
56 |
53 54 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ 𝑓 ) |
57 |
52 56
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ) |
58 |
48 57
|
ssrabdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
59 |
39 43 58
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } ) |
60 |
59 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ 𝑆 ) |
61 |
60 10
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ 𝑆 ) |
62 |
38 61
|
jca |
⊢ ( 𝜑 → ( 𝐸 : 𝑆 ⟶ 𝑇 ∧ 𝐹 : 𝑇 ⟶ 𝑆 ) ) |
63 |
1
|
subgss |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) → ℎ ⊆ 𝐵 ) |
64 |
31 63
|
syl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ℎ ⊆ 𝐵 ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) → ℎ ⊆ 𝐵 ) |
66 |
9
|
fvmpt2 |
⊢ ( ( ℎ ∈ 𝑆 ∧ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V ) → ( 𝐸 ‘ ℎ ) = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
67 |
24 15 66
|
sylancl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ( 𝐸 ‘ ℎ ) = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
68 |
67
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( 𝐸 ‘ ℎ ) = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
69 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) |
70 |
68 69
|
eqsstrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ 𝑓 ) |
71 |
|
eqid |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
72 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → 𝑎 ∈ ℎ ) |
73 |
|
sneq |
⊢ ( 𝑥 = 𝑎 → { 𝑥 } = { 𝑎 } ) |
74 |
73
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( { 𝑥 } ⊕ 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) |
75 |
74
|
eqeq2d |
⊢ ( 𝑥 = 𝑎 → ( ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ↔ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) ) |
76 |
75
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) ∧ 𝑥 = 𝑎 ) → ( ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ↔ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) ) |
77 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) |
78 |
72 76 77
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ∃ 𝑥 ∈ ℎ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
79 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ V ) |
80 |
71 78 79
|
elrnmptd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
81 |
70 80
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ) |
82 |
65 81
|
ssrabdv |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) → ℎ ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
83 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝑇 ) |
84 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
85 |
84
|
rabex |
⊢ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ V |
86 |
10
|
fvmpt2 |
⊢ ( ( 𝑓 ∈ 𝑇 ∧ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ V ) → ( 𝐹 ‘ 𝑓 ) = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
87 |
83 85 86
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑓 ) = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) → ( 𝐹 ‘ 𝑓 ) = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
89 |
82 88
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) → ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) |
90 |
67
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) → ( 𝐸 ‘ ℎ ) = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
91 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) → ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) |
92 |
91
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℎ ) → 𝑥 ∈ ( 𝐹 ‘ 𝑓 ) ) |
93 |
87
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℎ ) → ( 𝐹 ‘ 𝑓 ) = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
94 |
92 93
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℎ ) → 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
95 |
|
sneq |
⊢ ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } ) |
96 |
95
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
97 |
96
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ↔ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
98 |
97
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
99 |
98
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
100 |
94 99
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℎ ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
101 |
100
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) → ∀ 𝑥 ∈ ℎ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
102 |
71
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ℎ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ 𝑓 ) |
103 |
101 102
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ 𝑓 ) |
104 |
90 103
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) → ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) |
105 |
89 104
|
impbida |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ↔ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ) |
106 |
3
|
fvexi |
⊢ 𝑇 ∈ V |
107 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
108 |
6 107
|
ipole |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐸 ‘ ℎ ) ∈ 𝑇 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ) |
109 |
106 35 83 108
|
mp3an2ani |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ( 𝐸 ‘ ℎ ) ⊆ 𝑓 ) ) |
110 |
|
fvex |
⊢ ( SubGrp ‘ 𝐺 ) ∈ V |
111 |
2 110
|
rabex2 |
⊢ 𝑆 ∈ V |
112 |
61
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑓 ) ∈ 𝑆 ) |
113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑓 ) ∈ 𝑆 ) |
114 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
115 |
5 114
|
ipole |
⊢ ( ( 𝑆 ∈ V ∧ ℎ ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑓 ) ∈ 𝑆 ) → ( ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ↔ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ) |
116 |
111 24 113 115
|
mp3an2ani |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ↔ ℎ ⊆ ( 𝐹 ‘ 𝑓 ) ) ) |
117 |
105 109 116
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ) ) |
118 |
117
|
anasss |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑆 ∧ 𝑓 ∈ 𝑇 ) ) → ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ) ) |
119 |
118
|
ralrimivva |
⊢ ( 𝜑 → ∀ ℎ ∈ 𝑆 ∀ 𝑓 ∈ 𝑇 ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ) ) |
120 |
5
|
ipobas |
⊢ ( 𝑆 ∈ V → 𝑆 = ( Base ‘ 𝑉 ) ) |
121 |
111 120
|
ax-mp |
⊢ 𝑆 = ( Base ‘ 𝑉 ) |
122 |
6
|
ipobas |
⊢ ( 𝑇 ∈ V → 𝑇 = ( Base ‘ 𝑊 ) ) |
123 |
106 122
|
ax-mp |
⊢ 𝑇 = ( Base ‘ 𝑊 ) |
124 |
5
|
ipopos |
⊢ 𝑉 ∈ Poset |
125 |
|
posprs |
⊢ ( 𝑉 ∈ Poset → 𝑉 ∈ Proset ) |
126 |
124 125
|
mp1i |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
127 |
6
|
ipopos |
⊢ 𝑊 ∈ Poset |
128 |
|
posprs |
⊢ ( 𝑊 ∈ Poset → 𝑊 ∈ Proset ) |
129 |
127 128
|
mp1i |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
130 |
121 123 114 107 4 126 129
|
mgcval |
⊢ ( 𝜑 → ( 𝐸 𝐽 𝐹 ↔ ( ( 𝐸 : 𝑆 ⟶ 𝑇 ∧ 𝐹 : 𝑇 ⟶ 𝑆 ) ∧ ∀ ℎ ∈ 𝑆 ∀ 𝑓 ∈ 𝑇 ( ( 𝐸 ‘ ℎ ) ( le ‘ 𝑊 ) 𝑓 ↔ ℎ ( le ‘ 𝑉 ) ( 𝐹 ‘ 𝑓 ) ) ) ) ) |
131 |
62 119 130
|
mpbir2and |
⊢ ( 𝜑 → 𝐸 𝐽 𝐹 ) |