Metamath Proof Explorer


Theorem nsgmgc

Description: There is a monotone Galois connection between the lattice of subgroups of a group G containing a normal subgroup N and the lattice of subgroups of the quotient group G / N . This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses nsgmgc.b 𝐵 = ( Base ‘ 𝐺 )
nsgmgc.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
nsgmgc.t 𝑇 = ( SubGrp ‘ 𝑄 )
nsgmgc.j 𝐽 = ( 𝑉 MGalConn 𝑊 )
nsgmgc.v 𝑉 = ( toInc ‘ 𝑆 )
nsgmgc.w 𝑊 = ( toInc ‘ 𝑇 )
nsgmgc.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
nsgmgc.p = ( LSSum ‘ 𝐺 )
nsgmgc.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
nsgmgc.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
nsgmgc.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion nsgmgc ( 𝜑𝐸 𝐽 𝐹 )

Proof

Step Hyp Ref Expression
1 nsgmgc.b 𝐵 = ( Base ‘ 𝐺 )
2 nsgmgc.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
3 nsgmgc.t 𝑇 = ( SubGrp ‘ 𝑄 )
4 nsgmgc.j 𝐽 = ( 𝑉 MGalConn 𝑊 )
5 nsgmgc.v 𝑉 = ( toInc ‘ 𝑆 )
6 nsgmgc.w 𝑊 = ( toInc ‘ 𝑇 )
7 nsgmgc.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
8 nsgmgc.p = ( LSSum ‘ 𝐺 )
9 nsgmgc.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
10 nsgmgc.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
11 nsgmgc.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
12 nfv 𝜑
13 vex ∈ V
14 13 mptex ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V
15 14 rnex ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V
16 15 a1i ( ( 𝜑𝑆 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V )
17 12 16 9 fnmptd ( 𝜑𝐸 Fn 𝑆 )
18 mpteq1 ( = 𝑘 → ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥𝑘 ↦ ( { 𝑥 } 𝑁 ) ) )
19 18 rneqd ( = 𝑘 → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ran ( 𝑥𝑘 ↦ ( { 𝑥 } 𝑁 ) ) )
20 19 cbvmptv ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) = ( 𝑘𝑆 ↦ ran ( 𝑥𝑘 ↦ ( { 𝑥 } 𝑁 ) ) )
21 9 20 eqtri 𝐸 = ( 𝑘𝑆 ↦ ran ( 𝑥𝑘 ↦ ( { 𝑥 } 𝑁 ) ) )
22 eqid ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
23 11 adantr ( ( 𝜑𝑆 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
24 simpr ( ( 𝜑𝑆 ) → 𝑆 )
25 2 ssrab3 𝑆 ⊆ ( SubGrp ‘ 𝐺 )
26 25 a1i ( ( 𝜑𝑆 ) → 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
27 1 7 8 21 22 23 24 26 qusima ( ( 𝜑𝑆 ) → ( 𝐸 ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ) )
28 1 7 22 qusghm ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) )
29 23 28 syl ( ( 𝜑𝑆 ) → ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) )
30 25 a1i ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝐺 ) )
31 30 sselda ( ( 𝜑𝑆 ) → ∈ ( SubGrp ‘ 𝐺 ) )
32 ghmima ( ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ∈ ( 𝐺 GrpHom 𝑄 ) ∧ ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ) ∈ ( SubGrp ‘ 𝑄 ) )
33 29 31 32 syl2anc ( ( 𝜑𝑆 ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) “ ) ∈ ( SubGrp ‘ 𝑄 ) )
34 27 33 eqeltrd ( ( 𝜑𝑆 ) → ( 𝐸 ) ∈ ( SubGrp ‘ 𝑄 ) )
35 34 3 eleqtrrdi ( ( 𝜑𝑆 ) → ( 𝐸 ) ∈ 𝑇 )
36 35 ralrimiva ( 𝜑 → ∀ 𝑆 ( 𝐸 ) ∈ 𝑇 )
37 ffnfv ( 𝐸 : 𝑆𝑇 ↔ ( 𝐸 Fn 𝑆 ∧ ∀ 𝑆 ( 𝐸 ) ∈ 𝑇 ) )
38 17 36 37 sylanbrc ( 𝜑𝐸 : 𝑆𝑇 )
39 sseq2 ( = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ( 𝑁𝑁 ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) )
40 11 adantr ( ( 𝜑𝑓𝑇 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
41 simpr ( ( 𝜑𝑓𝑇 ) → 𝑓𝑇 )
42 41 3 eleqtrdi ( ( 𝜑𝑓𝑇 ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
43 1 7 8 40 42 nsgmgclem ( ( 𝜑𝑓𝑇 ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) )
44 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
45 11 44 syl ( 𝜑𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
46 1 subgss ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁𝐵 )
47 45 46 syl ( 𝜑𝑁𝐵 )
48 47 adantr ( ( 𝜑𝑓𝑇 ) → 𝑁𝐵 )
49 45 ad2antrr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
50 simpr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑎𝑁 )
51 8 grplsmid ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) = 𝑁 )
52 49 50 51 syl2anc ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) = 𝑁 )
53 11 ad2antrr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
54 42 adantr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
55 7 nsgqus0 ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁𝑓 )
56 53 54 55 syl2anc ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑁𝑓 )
57 52 56 eqeltrd ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) ∈ 𝑓 )
58 48 57 ssrabdv ( ( 𝜑𝑓𝑇 ) → 𝑁 ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
59 39 43 58 elrabd ( ( 𝜑𝑓𝑇 ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 } )
60 59 2 eleqtrrdi ( ( 𝜑𝑓𝑇 ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ 𝑆 )
61 60 10 fmptd ( 𝜑𝐹 : 𝑇𝑆 )
62 38 61 jca ( 𝜑 → ( 𝐸 : 𝑆𝑇𝐹 : 𝑇𝑆 ) )
63 1 subgss ( ∈ ( SubGrp ‘ 𝐺 ) → 𝐵 )
64 31 63 syl ( ( 𝜑𝑆 ) → 𝐵 )
65 64 ad2antrr ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) → 𝐵 )
66 9 fvmpt2 ( ( 𝑆 ∧ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V ) → ( 𝐸 ) = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
67 24 15 66 sylancl ( ( 𝜑𝑆 ) → ( 𝐸 ) = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
68 67 ad5ant12 ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( 𝐸 ) = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
69 simplr ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( 𝐸 ) ⊆ 𝑓 )
70 68 69 eqsstrrd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ 𝑓 )
71 eqid ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
72 simpr ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → 𝑎 )
73 sneq ( 𝑥 = 𝑎 → { 𝑥 } = { 𝑎 } )
74 73 oveq1d ( 𝑥 = 𝑎 → ( { 𝑥 } 𝑁 ) = ( { 𝑎 } 𝑁 ) )
75 74 eqeq2d ( 𝑥 = 𝑎 → ( ( { 𝑎 } 𝑁 ) = ( { 𝑥 } 𝑁 ) ↔ ( { 𝑎 } 𝑁 ) = ( { 𝑎 } 𝑁 ) ) )
76 75 adantl ( ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) ∧ 𝑥 = 𝑎 ) → ( ( { 𝑎 } 𝑁 ) = ( { 𝑥 } 𝑁 ) ↔ ( { 𝑎 } 𝑁 ) = ( { 𝑎 } 𝑁 ) ) )
77 eqidd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( { 𝑎 } 𝑁 ) = ( { 𝑎 } 𝑁 ) )
78 72 76 77 rspcedvd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ∃ 𝑥 ( { 𝑎 } 𝑁 ) = ( { 𝑥 } 𝑁 ) )
79 ovexd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( { 𝑎 } 𝑁 ) ∈ V )
80 71 78 79 elrnmptd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( { 𝑎 } 𝑁 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
81 70 80 sseldd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) ∧ 𝑎 ) → ( { 𝑎 } 𝑁 ) ∈ 𝑓 )
82 65 81 ssrabdv ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) → ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
83 simpr ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → 𝑓𝑇 )
84 1 fvexi 𝐵 ∈ V
85 84 rabex { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ V
86 10 fvmpt2 ( ( 𝑓𝑇 ∧ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ V ) → ( 𝐹𝑓 ) = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
87 83 85 86 sylancl ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( 𝐹𝑓 ) = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
88 87 adantr ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) → ( 𝐹𝑓 ) = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
89 82 88 sseqtrrd ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ( 𝐸 ) ⊆ 𝑓 ) → ⊆ ( 𝐹𝑓 ) )
90 67 ad2antrr ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) → ( 𝐸 ) = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
91 simpr ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) → ⊆ ( 𝐹𝑓 ) )
92 91 sselda ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) ∧ 𝑥 ) → 𝑥 ∈ ( 𝐹𝑓 ) )
93 87 ad2antrr ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) ∧ 𝑥 ) → ( 𝐹𝑓 ) = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
94 92 93 eleqtrd ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) ∧ 𝑥 ) → 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
95 sneq ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } )
96 95 oveq1d ( 𝑎 = 𝑥 → ( { 𝑎 } 𝑁 ) = ( { 𝑥 } 𝑁 ) )
97 96 eleq1d ( 𝑎 = 𝑥 → ( ( { 𝑎 } 𝑁 ) ∈ 𝑓 ↔ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) )
98 97 elrab ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↔ ( 𝑥𝐵 ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) )
99 98 simprbi ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ( { 𝑥 } 𝑁 ) ∈ 𝑓 )
100 94 99 syl ( ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) ∧ 𝑥 ) → ( { 𝑥 } 𝑁 ) ∈ 𝑓 )
101 100 ralrimiva ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) → ∀ 𝑥 ( { 𝑥 } 𝑁 ) ∈ 𝑓 )
102 71 rnmptss ( ∀ 𝑥 ( { 𝑥 } 𝑁 ) ∈ 𝑓 → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ 𝑓 )
103 101 102 syl ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ 𝑓 )
104 90 103 eqsstrd ( ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) ∧ ⊆ ( 𝐹𝑓 ) ) → ( 𝐸 ) ⊆ 𝑓 )
105 89 104 impbida ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( ( 𝐸 ) ⊆ 𝑓 ⊆ ( 𝐹𝑓 ) ) )
106 3 fvexi 𝑇 ∈ V
107 eqid ( le ‘ 𝑊 ) = ( le ‘ 𝑊 )
108 6 107 ipole ( ( 𝑇 ∈ V ∧ ( 𝐸 ) ∈ 𝑇𝑓𝑇 ) → ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ↔ ( 𝐸 ) ⊆ 𝑓 ) )
109 106 35 83 108 mp3an2ani ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ↔ ( 𝐸 ) ⊆ 𝑓 ) )
110 fvex ( SubGrp ‘ 𝐺 ) ∈ V
111 2 110 rabex2 𝑆 ∈ V
112 61 ffvelrnda ( ( 𝜑𝑓𝑇 ) → ( 𝐹𝑓 ) ∈ 𝑆 )
113 112 adantlr ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( 𝐹𝑓 ) ∈ 𝑆 )
114 eqid ( le ‘ 𝑉 ) = ( le ‘ 𝑉 )
115 5 114 ipole ( ( 𝑆 ∈ V ∧ 𝑆 ∧ ( 𝐹𝑓 ) ∈ 𝑆 ) → ( ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ↔ ⊆ ( 𝐹𝑓 ) ) )
116 111 24 113 115 mp3an2ani ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ↔ ⊆ ( 𝐹𝑓 ) ) )
117 105 109 116 3bitr4d ( ( ( 𝜑𝑆 ) ∧ 𝑓𝑇 ) → ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ) )
118 117 anasss ( ( 𝜑 ∧ ( 𝑆𝑓𝑇 ) ) → ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ) )
119 118 ralrimivva ( 𝜑 → ∀ 𝑆𝑓𝑇 ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ) )
120 5 ipobas ( 𝑆 ∈ V → 𝑆 = ( Base ‘ 𝑉 ) )
121 111 120 ax-mp 𝑆 = ( Base ‘ 𝑉 )
122 6 ipobas ( 𝑇 ∈ V → 𝑇 = ( Base ‘ 𝑊 ) )
123 106 122 ax-mp 𝑇 = ( Base ‘ 𝑊 )
124 5 ipopos 𝑉 ∈ Poset
125 posprs ( 𝑉 ∈ Poset → 𝑉 ∈ Proset )
126 124 125 mp1i ( 𝜑𝑉 ∈ Proset )
127 6 ipopos 𝑊 ∈ Poset
128 posprs ( 𝑊 ∈ Poset → 𝑊 ∈ Proset )
129 127 128 mp1i ( 𝜑𝑊 ∈ Proset )
130 121 123 114 107 4 126 129 mgcval ( 𝜑 → ( 𝐸 𝐽 𝐹 ↔ ( ( 𝐸 : 𝑆𝑇𝐹 : 𝑇𝑆 ) ∧ ∀ 𝑆𝑓𝑇 ( ( 𝐸 ) ( le ‘ 𝑊 ) 𝑓 ( le ‘ 𝑉 ) ( 𝐹𝑓 ) ) ) ) )
131 62 119 130 mpbir2and ( 𝜑𝐸 𝐽 𝐹 )