Step |
Hyp |
Ref |
Expression |
1 |
|
nsgmgc.b |
|- B = ( Base ` G ) |
2 |
|
nsgmgc.s |
|- S = { h e. ( SubGrp ` G ) | N C_ h } |
3 |
|
nsgmgc.t |
|- T = ( SubGrp ` Q ) |
4 |
|
nsgmgc.j |
|- J = ( V MGalConn W ) |
5 |
|
nsgmgc.v |
|- V = ( toInc ` S ) |
6 |
|
nsgmgc.w |
|- W = ( toInc ` T ) |
7 |
|
nsgmgc.q |
|- Q = ( G /s ( G ~QG N ) ) |
8 |
|
nsgmgc.p |
|- .(+) = ( LSSum ` G ) |
9 |
|
nsgmgc.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
10 |
|
nsgmgc.f |
|- F = ( f e. T |-> { a e. B | ( { a } .(+) N ) e. f } ) |
11 |
|
nsgmgc.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
12 |
|
nfv |
|- F/ h ph |
13 |
|
vex |
|- h e. _V |
14 |
13
|
mptex |
|- ( x e. h |-> ( { x } .(+) N ) ) e. _V |
15 |
14
|
rnex |
|- ran ( x e. h |-> ( { x } .(+) N ) ) e. _V |
16 |
15
|
a1i |
|- ( ( ph /\ h e. S ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. _V ) |
17 |
12 16 9
|
fnmptd |
|- ( ph -> E Fn S ) |
18 |
|
mpteq1 |
|- ( h = k -> ( x e. h |-> ( { x } .(+) N ) ) = ( x e. k |-> ( { x } .(+) N ) ) ) |
19 |
18
|
rneqd |
|- ( h = k -> ran ( x e. h |-> ( { x } .(+) N ) ) = ran ( x e. k |-> ( { x } .(+) N ) ) ) |
20 |
19
|
cbvmptv |
|- ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) = ( k e. S |-> ran ( x e. k |-> ( { x } .(+) N ) ) ) |
21 |
9 20
|
eqtri |
|- E = ( k e. S |-> ran ( x e. k |-> ( { x } .(+) N ) ) ) |
22 |
|
eqid |
|- ( x e. B |-> [ x ] ( G ~QG N ) ) = ( x e. B |-> [ x ] ( G ~QG N ) ) |
23 |
11
|
adantr |
|- ( ( ph /\ h e. S ) -> N e. ( NrmSGrp ` G ) ) |
24 |
|
simpr |
|- ( ( ph /\ h e. S ) -> h e. S ) |
25 |
2
|
ssrab3 |
|- S C_ ( SubGrp ` G ) |
26 |
25
|
a1i |
|- ( ( ph /\ h e. S ) -> S C_ ( SubGrp ` G ) ) |
27 |
1 7 8 21 22 23 24 26
|
qusima |
|- ( ( ph /\ h e. S ) -> ( E ` h ) = ( ( x e. B |-> [ x ] ( G ~QG N ) ) " h ) ) |
28 |
1 7 22
|
qusghm |
|- ( N e. ( NrmSGrp ` G ) -> ( x e. B |-> [ x ] ( G ~QG N ) ) e. ( G GrpHom Q ) ) |
29 |
23 28
|
syl |
|- ( ( ph /\ h e. S ) -> ( x e. B |-> [ x ] ( G ~QG N ) ) e. ( G GrpHom Q ) ) |
30 |
25
|
a1i |
|- ( ph -> S C_ ( SubGrp ` G ) ) |
31 |
30
|
sselda |
|- ( ( ph /\ h e. S ) -> h e. ( SubGrp ` G ) ) |
32 |
|
ghmima |
|- ( ( ( x e. B |-> [ x ] ( G ~QG N ) ) e. ( G GrpHom Q ) /\ h e. ( SubGrp ` G ) ) -> ( ( x e. B |-> [ x ] ( G ~QG N ) ) " h ) e. ( SubGrp ` Q ) ) |
33 |
29 31 32
|
syl2anc |
|- ( ( ph /\ h e. S ) -> ( ( x e. B |-> [ x ] ( G ~QG N ) ) " h ) e. ( SubGrp ` Q ) ) |
34 |
27 33
|
eqeltrd |
|- ( ( ph /\ h e. S ) -> ( E ` h ) e. ( SubGrp ` Q ) ) |
35 |
34 3
|
eleqtrrdi |
|- ( ( ph /\ h e. S ) -> ( E ` h ) e. T ) |
36 |
35
|
ralrimiva |
|- ( ph -> A. h e. S ( E ` h ) e. T ) |
37 |
|
ffnfv |
|- ( E : S --> T <-> ( E Fn S /\ A. h e. S ( E ` h ) e. T ) ) |
38 |
17 36 37
|
sylanbrc |
|- ( ph -> E : S --> T ) |
39 |
|
sseq2 |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ( N C_ h <-> N C_ { a e. B | ( { a } .(+) N ) e. f } ) ) |
40 |
11
|
adantr |
|- ( ( ph /\ f e. T ) -> N e. ( NrmSGrp ` G ) ) |
41 |
|
simpr |
|- ( ( ph /\ f e. T ) -> f e. T ) |
42 |
41 3
|
eleqtrdi |
|- ( ( ph /\ f e. T ) -> f e. ( SubGrp ` Q ) ) |
43 |
1 7 8 40 42
|
nsgmgclem |
|- ( ( ph /\ f e. T ) -> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) |
44 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
45 |
11 44
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
46 |
1
|
subgss |
|- ( N e. ( SubGrp ` G ) -> N C_ B ) |
47 |
45 46
|
syl |
|- ( ph -> N C_ B ) |
48 |
47
|
adantr |
|- ( ( ph /\ f e. T ) -> N C_ B ) |
49 |
45
|
ad2antrr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. ( SubGrp ` G ) ) |
50 |
|
simpr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> a e. N ) |
51 |
8
|
grplsmid |
|- ( ( N e. ( SubGrp ` G ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
52 |
49 50 51
|
syl2anc |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
53 |
11
|
ad2antrr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. ( NrmSGrp ` G ) ) |
54 |
42
|
adantr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> f e. ( SubGrp ` Q ) ) |
55 |
7
|
nsgqus0 |
|- ( ( N e. ( NrmSGrp ` G ) /\ f e. ( SubGrp ` Q ) ) -> N e. f ) |
56 |
53 54 55
|
syl2anc |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. f ) |
57 |
52 56
|
eqeltrd |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) e. f ) |
58 |
48 57
|
ssrabdv |
|- ( ( ph /\ f e. T ) -> N C_ { a e. B | ( { a } .(+) N ) e. f } ) |
59 |
39 43 58
|
elrabd |
|- ( ( ph /\ f e. T ) -> { a e. B | ( { a } .(+) N ) e. f } e. { h e. ( SubGrp ` G ) | N C_ h } ) |
60 |
59 2
|
eleqtrrdi |
|- ( ( ph /\ f e. T ) -> { a e. B | ( { a } .(+) N ) e. f } e. S ) |
61 |
60 10
|
fmptd |
|- ( ph -> F : T --> S ) |
62 |
38 61
|
jca |
|- ( ph -> ( E : S --> T /\ F : T --> S ) ) |
63 |
1
|
subgss |
|- ( h e. ( SubGrp ` G ) -> h C_ B ) |
64 |
31 63
|
syl |
|- ( ( ph /\ h e. S ) -> h C_ B ) |
65 |
64
|
ad2antrr |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) -> h C_ B ) |
66 |
9
|
fvmpt2 |
|- ( ( h e. S /\ ran ( x e. h |-> ( { x } .(+) N ) ) e. _V ) -> ( E ` h ) = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
67 |
24 15 66
|
sylancl |
|- ( ( ph /\ h e. S ) -> ( E ` h ) = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
68 |
67
|
ad5ant12 |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( E ` h ) = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
69 |
|
simplr |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( E ` h ) C_ f ) |
70 |
68 69
|
eqsstrrd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) C_ f ) |
71 |
|
eqid |
|- ( x e. h |-> ( { x } .(+) N ) ) = ( x e. h |-> ( { x } .(+) N ) ) |
72 |
|
simpr |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> a e. h ) |
73 |
|
sneq |
|- ( x = a -> { x } = { a } ) |
74 |
73
|
oveq1d |
|- ( x = a -> ( { x } .(+) N ) = ( { a } .(+) N ) ) |
75 |
74
|
eqeq2d |
|- ( x = a -> ( ( { a } .(+) N ) = ( { x } .(+) N ) <-> ( { a } .(+) N ) = ( { a } .(+) N ) ) ) |
76 |
75
|
adantl |
|- ( ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) /\ x = a ) -> ( ( { a } .(+) N ) = ( { x } .(+) N ) <-> ( { a } .(+) N ) = ( { a } .(+) N ) ) ) |
77 |
|
eqidd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( { a } .(+) N ) = ( { a } .(+) N ) ) |
78 |
72 76 77
|
rspcedvd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> E. x e. h ( { a } .(+) N ) = ( { x } .(+) N ) ) |
79 |
|
ovexd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( { a } .(+) N ) e. _V ) |
80 |
71 78 79
|
elrnmptd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
81 |
70 80
|
sseldd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) /\ a e. h ) -> ( { a } .(+) N ) e. f ) |
82 |
65 81
|
ssrabdv |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) -> h C_ { a e. B | ( { a } .(+) N ) e. f } ) |
83 |
|
simpr |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> f e. T ) |
84 |
1
|
fvexi |
|- B e. _V |
85 |
84
|
rabex |
|- { a e. B | ( { a } .(+) N ) e. f } e. _V |
86 |
10
|
fvmpt2 |
|- ( ( f e. T /\ { a e. B | ( { a } .(+) N ) e. f } e. _V ) -> ( F ` f ) = { a e. B | ( { a } .(+) N ) e. f } ) |
87 |
83 85 86
|
sylancl |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( F ` f ) = { a e. B | ( { a } .(+) N ) e. f } ) |
88 |
87
|
adantr |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) -> ( F ` f ) = { a e. B | ( { a } .(+) N ) e. f } ) |
89 |
82 88
|
sseqtrrd |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ ( E ` h ) C_ f ) -> h C_ ( F ` f ) ) |
90 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) -> ( E ` h ) = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
91 |
|
simpr |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) -> h C_ ( F ` f ) ) |
92 |
91
|
sselda |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) /\ x e. h ) -> x e. ( F ` f ) ) |
93 |
87
|
ad2antrr |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) /\ x e. h ) -> ( F ` f ) = { a e. B | ( { a } .(+) N ) e. f } ) |
94 |
92 93
|
eleqtrd |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) /\ x e. h ) -> x e. { a e. B | ( { a } .(+) N ) e. f } ) |
95 |
|
sneq |
|- ( a = x -> { a } = { x } ) |
96 |
95
|
oveq1d |
|- ( a = x -> ( { a } .(+) N ) = ( { x } .(+) N ) ) |
97 |
96
|
eleq1d |
|- ( a = x -> ( ( { a } .(+) N ) e. f <-> ( { x } .(+) N ) e. f ) ) |
98 |
97
|
elrab |
|- ( x e. { a e. B | ( { a } .(+) N ) e. f } <-> ( x e. B /\ ( { x } .(+) N ) e. f ) ) |
99 |
98
|
simprbi |
|- ( x e. { a e. B | ( { a } .(+) N ) e. f } -> ( { x } .(+) N ) e. f ) |
100 |
94 99
|
syl |
|- ( ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) /\ x e. h ) -> ( { x } .(+) N ) e. f ) |
101 |
100
|
ralrimiva |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) -> A. x e. h ( { x } .(+) N ) e. f ) |
102 |
71
|
rnmptss |
|- ( A. x e. h ( { x } .(+) N ) e. f -> ran ( x e. h |-> ( { x } .(+) N ) ) C_ f ) |
103 |
101 102
|
syl |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) -> ran ( x e. h |-> ( { x } .(+) N ) ) C_ f ) |
104 |
90 103
|
eqsstrd |
|- ( ( ( ( ph /\ h e. S ) /\ f e. T ) /\ h C_ ( F ` f ) ) -> ( E ` h ) C_ f ) |
105 |
89 104
|
impbida |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( ( E ` h ) C_ f <-> h C_ ( F ` f ) ) ) |
106 |
3
|
fvexi |
|- T e. _V |
107 |
|
eqid |
|- ( le ` W ) = ( le ` W ) |
108 |
6 107
|
ipole |
|- ( ( T e. _V /\ ( E ` h ) e. T /\ f e. T ) -> ( ( E ` h ) ( le ` W ) f <-> ( E ` h ) C_ f ) ) |
109 |
106 35 83 108
|
mp3an2ani |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( ( E ` h ) ( le ` W ) f <-> ( E ` h ) C_ f ) ) |
110 |
|
fvex |
|- ( SubGrp ` G ) e. _V |
111 |
2 110
|
rabex2 |
|- S e. _V |
112 |
61
|
ffvelrnda |
|- ( ( ph /\ f e. T ) -> ( F ` f ) e. S ) |
113 |
112
|
adantlr |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( F ` f ) e. S ) |
114 |
|
eqid |
|- ( le ` V ) = ( le ` V ) |
115 |
5 114
|
ipole |
|- ( ( S e. _V /\ h e. S /\ ( F ` f ) e. S ) -> ( h ( le ` V ) ( F ` f ) <-> h C_ ( F ` f ) ) ) |
116 |
111 24 113 115
|
mp3an2ani |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( h ( le ` V ) ( F ` f ) <-> h C_ ( F ` f ) ) ) |
117 |
105 109 116
|
3bitr4d |
|- ( ( ( ph /\ h e. S ) /\ f e. T ) -> ( ( E ` h ) ( le ` W ) f <-> h ( le ` V ) ( F ` f ) ) ) |
118 |
117
|
anasss |
|- ( ( ph /\ ( h e. S /\ f e. T ) ) -> ( ( E ` h ) ( le ` W ) f <-> h ( le ` V ) ( F ` f ) ) ) |
119 |
118
|
ralrimivva |
|- ( ph -> A. h e. S A. f e. T ( ( E ` h ) ( le ` W ) f <-> h ( le ` V ) ( F ` f ) ) ) |
120 |
5
|
ipobas |
|- ( S e. _V -> S = ( Base ` V ) ) |
121 |
111 120
|
ax-mp |
|- S = ( Base ` V ) |
122 |
6
|
ipobas |
|- ( T e. _V -> T = ( Base ` W ) ) |
123 |
106 122
|
ax-mp |
|- T = ( Base ` W ) |
124 |
5
|
ipopos |
|- V e. Poset |
125 |
|
posprs |
|- ( V e. Poset -> V e. Proset ) |
126 |
124 125
|
mp1i |
|- ( ph -> V e. Proset ) |
127 |
6
|
ipopos |
|- W e. Poset |
128 |
|
posprs |
|- ( W e. Poset -> W e. Proset ) |
129 |
127 128
|
mp1i |
|- ( ph -> W e. Proset ) |
130 |
121 123 114 107 4 126 129
|
mgcval |
|- ( ph -> ( E J F <-> ( ( E : S --> T /\ F : T --> S ) /\ A. h e. S A. f e. T ( ( E ` h ) ( le ` W ) f <-> h ( le ` V ) ( F ` f ) ) ) ) ) |
131 |
62 119 130
|
mpbir2and |
|- ( ph -> E J F ) |