Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
|- B = ( Base ` G ) |
2 |
|
nsgqusf1o.s |
|- S = { h e. ( SubGrp ` G ) | N C_ h } |
3 |
|
nsgqusf1o.t |
|- T = ( SubGrp ` Q ) |
4 |
|
nsgqusf1o.1 |
|- .<_ = ( le ` ( toInc ` S ) ) |
5 |
|
nsgqusf1o.2 |
|- .c_ = ( le ` ( toInc ` T ) ) |
6 |
|
nsgqusf1o.q |
|- Q = ( G /s ( G ~QG N ) ) |
7 |
|
nsgqusf1o.p |
|- .(+) = ( LSSum ` G ) |
8 |
|
nsgqusf1o.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
9 |
|
nsgqusf1o.f |
|- F = ( f e. T |-> { a e. B | ( { a } .(+) N ) e. f } ) |
10 |
|
nsgqusf1o.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
11 |
6
|
qusgrp |
|- ( N e. ( NrmSGrp ` G ) -> Q e. Grp ) |
12 |
10 11
|
syl |
|- ( ph -> Q e. Grp ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> Q e. Grp ) |
14 |
1
|
subgss |
|- ( h e. ( SubGrp ` G ) -> h C_ B ) |
15 |
14
|
ad2antlr |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> h C_ B ) |
16 |
15
|
sselda |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> x e. B ) |
17 |
|
ovex |
|- ( G ~QG N ) e. _V |
18 |
17
|
ecelqsi |
|- ( x e. B -> [ x ] ( G ~QG N ) e. ( B /. ( G ~QG N ) ) ) |
19 |
16 18
|
syl |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> [ x ] ( G ~QG N ) e. ( B /. ( G ~QG N ) ) ) |
20 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
21 |
10 20
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
22 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> N e. ( SubGrp ` G ) ) |
23 |
1 7 22 16
|
quslsm |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
24 |
6
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
25 |
1
|
a1i |
|- ( ph -> B = ( Base ` G ) ) |
26 |
|
ovexd |
|- ( ph -> ( G ~QG N ) e. _V ) |
27 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
28 |
21 27
|
syl |
|- ( ph -> G e. Grp ) |
29 |
24 25 26 28
|
qusbas |
|- ( ph -> ( B /. ( G ~QG N ) ) = ( Base ` Q ) ) |
30 |
29
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> ( B /. ( G ~QG N ) ) = ( Base ` Q ) ) |
31 |
19 23 30
|
3eltr3d |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> ( { x } .(+) N ) e. ( Base ` Q ) ) |
32 |
31
|
ralrimiva |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> A. x e. h ( { x } .(+) N ) e. ( Base ` Q ) ) |
33 |
|
eqid |
|- ( x e. h |-> ( { x } .(+) N ) ) = ( x e. h |-> ( { x } .(+) N ) ) |
34 |
33
|
rnmptss |
|- ( A. x e. h ( { x } .(+) N ) e. ( Base ` Q ) -> ran ( x e. h |-> ( { x } .(+) N ) ) C_ ( Base ` Q ) ) |
35 |
32 34
|
syl |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) C_ ( Base ` Q ) ) |
36 |
|
nfv |
|- F/ x ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) |
37 |
|
ovexd |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> ( { x } .(+) N ) e. _V ) |
38 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
39 |
38
|
subg0cl |
|- ( h e. ( SubGrp ` G ) -> ( 0g ` G ) e. h ) |
40 |
39
|
ne0d |
|- ( h e. ( SubGrp ` G ) -> h =/= (/) ) |
41 |
40
|
ad2antlr |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> h =/= (/) ) |
42 |
36 37 33 41
|
rnmptn0 |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) =/= (/) ) |
43 |
|
nfmpt1 |
|- F/_ x ( x e. h |-> ( { x } .(+) N ) ) |
44 |
43
|
nfrn |
|- F/_ x ran ( x e. h |-> ( { x } .(+) N ) ) |
45 |
44
|
nfel2 |
|- F/ x i e. ran ( x e. h |-> ( { x } .(+) N ) ) |
46 |
36 45
|
nfan |
|- F/ x ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ i e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
47 |
44
|
nfel2 |
|- F/ x ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) |
48 |
44 47
|
nfralw |
|- F/ x A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) |
49 |
44
|
nfel2 |
|- F/ x ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) |
50 |
48 49
|
nfan |
|- F/ x ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
51 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
52 |
51
|
oveq1d |
|- ( x = z -> ( { x } .(+) N ) = ( { z } .(+) N ) ) |
53 |
52
|
cbvmptv |
|- ( x e. h |-> ( { x } .(+) N ) ) = ( z e. h |-> ( { z } .(+) N ) ) |
54 |
|
simp-4r |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> h e. ( SubGrp ` G ) ) |
55 |
54
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> h e. ( SubGrp ` G ) ) |
56 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> x e. h ) |
57 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> y e. h ) |
58 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
59 |
58
|
subgcl |
|- ( ( h e. ( SubGrp ` G ) /\ x e. h /\ y e. h ) -> ( x ( +g ` G ) y ) e. h ) |
60 |
55 56 57 59
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( x ( +g ` G ) y ) e. h ) |
61 |
|
sneq |
|- ( z = ( x ( +g ` G ) y ) -> { z } = { ( x ( +g ` G ) y ) } ) |
62 |
61
|
oveq1d |
|- ( z = ( x ( +g ` G ) y ) -> ( { z } .(+) N ) = ( { ( x ( +g ` G ) y ) } .(+) N ) ) |
63 |
62
|
eqeq2d |
|- ( z = ( x ( +g ` G ) y ) -> ( ( i ( +g ` Q ) j ) = ( { z } .(+) N ) <-> ( i ( +g ` Q ) j ) = ( { ( x ( +g ` G ) y ) } .(+) N ) ) ) |
64 |
63
|
adantl |
|- ( ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) /\ z = ( x ( +g ` G ) y ) ) -> ( ( i ( +g ` Q ) j ) = ( { z } .(+) N ) <-> ( i ( +g ` Q ) j ) = ( { ( x ( +g ` G ) y ) } .(+) N ) ) ) |
65 |
|
simpr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> i = ( { x } .(+) N ) ) |
66 |
23
|
adantr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
67 |
65 66
|
eqtr4d |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> i = [ x ] ( G ~QG N ) ) |
68 |
67
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> i = [ x ] ( G ~QG N ) ) |
69 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> j = ( { y } .(+) N ) ) |
70 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> N e. ( NrmSGrp ` G ) ) |
71 |
70
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> N e. ( NrmSGrp ` G ) ) |
72 |
71 20
|
syl |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> N e. ( SubGrp ` G ) ) |
73 |
55 14
|
syl |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> h C_ B ) |
74 |
73 57
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> y e. B ) |
75 |
1 7 72 74
|
quslsm |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> [ y ] ( G ~QG N ) = ( { y } .(+) N ) ) |
76 |
69 75
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> j = [ y ] ( G ~QG N ) ) |
77 |
68 76
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( i ( +g ` Q ) j ) = ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) ) |
78 |
16
|
adantr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> x e. B ) |
79 |
78
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> x e. B ) |
80 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
81 |
6 1 58 80
|
qusadd |
|- ( ( N e. ( NrmSGrp ` G ) /\ x e. B /\ y e. B ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) |
82 |
71 79 74 81
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) |
83 |
73 60
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( x ( +g ` G ) y ) e. B ) |
84 |
1 7 72 83
|
quslsm |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> [ ( x ( +g ` G ) y ) ] ( G ~QG N ) = ( { ( x ( +g ` G ) y ) } .(+) N ) ) |
85 |
77 82 84
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( i ( +g ` Q ) j ) = ( { ( x ( +g ` G ) y ) } .(+) N ) ) |
86 |
60 64 85
|
rspcedvd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> E. z e. h ( i ( +g ` Q ) j ) = ( { z } .(+) N ) ) |
87 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( i ( +g ` Q ) j ) e. _V ) |
88 |
53 86 87
|
elrnmptd |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
89 |
88
|
adantllr |
|- ( ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ j e. ran ( x e. h |-> ( { x } .(+) N ) ) ) /\ y e. h ) /\ j = ( { y } .(+) N ) ) -> ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
90 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
91 |
90
|
oveq1d |
|- ( x = y -> ( { x } .(+) N ) = ( { y } .(+) N ) ) |
92 |
91
|
cbvmptv |
|- ( x e. h |-> ( { x } .(+) N ) ) = ( y e. h |-> ( { y } .(+) N ) ) |
93 |
|
ovex |
|- ( { y } .(+) N ) e. _V |
94 |
92 93
|
elrnmpti |
|- ( j e. ran ( x e. h |-> ( { x } .(+) N ) ) <-> E. y e. h j = ( { y } .(+) N ) ) |
95 |
94
|
biimpi |
|- ( j e. ran ( x e. h |-> ( { x } .(+) N ) ) -> E. y e. h j = ( { y } .(+) N ) ) |
96 |
95
|
adantl |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ j e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> E. y e. h j = ( { y } .(+) N ) ) |
97 |
89 96
|
r19.29a |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ j e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
98 |
97
|
ralrimiva |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
99 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
100 |
99
|
subginvcl |
|- ( ( h e. ( SubGrp ` G ) /\ x e. h ) -> ( ( invg ` G ) ` x ) e. h ) |
101 |
100
|
ad5ant24 |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` G ) ` x ) e. h ) |
102 |
|
simpr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> y = ( ( invg ` G ) ` x ) ) |
103 |
102
|
sneqd |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> { y } = { ( ( invg ` G ) ` x ) } ) |
104 |
103
|
oveq1d |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> ( { y } .(+) N ) = ( { ( ( invg ` G ) ` x ) } .(+) N ) ) |
105 |
15
|
adantr |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> h C_ B ) |
106 |
100
|
ad4ant24 |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> ( ( invg ` G ) ` x ) e. h ) |
107 |
105 106
|
sseldd |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> ( ( invg ` G ) ` x ) e. B ) |
108 |
1 7 22 107
|
quslsm |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) -> [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) = ( { ( ( invg ` G ) ` x ) } .(+) N ) ) |
109 |
108
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) = ( { ( ( invg ` G ) ` x ) } .(+) N ) ) |
110 |
104 109
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> ( { y } .(+) N ) = [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) ) |
111 |
110
|
eqeq2d |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) /\ y = ( ( invg ` G ) ` x ) ) -> ( ( ( invg ` Q ) ` i ) = ( { y } .(+) N ) <-> ( ( invg ` Q ) ` i ) = [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) ) ) |
112 |
67
|
fveq2d |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` Q ) ` i ) = ( ( invg ` Q ) ` [ x ] ( G ~QG N ) ) ) |
113 |
|
eqid |
|- ( invg ` Q ) = ( invg ` Q ) |
114 |
6 1 99 113
|
qusinv |
|- ( ( N e. ( NrmSGrp ` G ) /\ x e. B ) -> ( ( invg ` Q ) ` [ x ] ( G ~QG N ) ) = [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) ) |
115 |
70 78 114
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` Q ) ` [ x ] ( G ~QG N ) ) = [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) ) |
116 |
112 115
|
eqtrd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` Q ) ` i ) = [ ( ( invg ` G ) ` x ) ] ( G ~QG N ) ) |
117 |
101 111 116
|
rspcedvd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> E. y e. h ( ( invg ` Q ) ` i ) = ( { y } .(+) N ) ) |
118 |
|
fvexd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` Q ) ` i ) e. _V ) |
119 |
92 117 118
|
elrnmptd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
120 |
98 119
|
jca |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) |
121 |
120
|
adantllr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ i e. ran ( x e. h |-> ( { x } .(+) N ) ) ) /\ x e. h ) /\ i = ( { x } .(+) N ) ) -> ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) |
122 |
|
ovex |
|- ( { x } .(+) N ) e. _V |
123 |
33 122
|
elrnmpti |
|- ( i e. ran ( x e. h |-> ( { x } .(+) N ) ) <-> E. x e. h i = ( { x } .(+) N ) ) |
124 |
123
|
biimpi |
|- ( i e. ran ( x e. h |-> ( { x } .(+) N ) ) -> E. x e. h i = ( { x } .(+) N ) ) |
125 |
124
|
adantl |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ i e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> E. x e. h i = ( { x } .(+) N ) ) |
126 |
46 50 121 125
|
r19.29af2 |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ i e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) |
127 |
126
|
ralrimiva |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> A. i e. ran ( x e. h |-> ( { x } .(+) N ) ) ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) |
128 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
129 |
128 80 113
|
issubg2 |
|- ( Q e. Grp -> ( ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) <-> ( ran ( x e. h |-> ( { x } .(+) N ) ) C_ ( Base ` Q ) /\ ran ( x e. h |-> ( { x } .(+) N ) ) =/= (/) /\ A. i e. ran ( x e. h |-> ( { x } .(+) N ) ) ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) ) ) |
130 |
129
|
biimpar |
|- ( ( Q e. Grp /\ ( ran ( x e. h |-> ( { x } .(+) N ) ) C_ ( Base ` Q ) /\ ran ( x e. h |-> ( { x } .(+) N ) ) =/= (/) /\ A. i e. ran ( x e. h |-> ( { x } .(+) N ) ) ( A. j e. ran ( x e. h |-> ( { x } .(+) N ) ) ( i ( +g ` Q ) j ) e. ran ( x e. h |-> ( { x } .(+) N ) ) /\ ( ( invg ` Q ) ` i ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) ) |
131 |
13 35 42 127 130
|
syl13anc |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) ) |
132 |
131 3
|
eleqtrrdi |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. T ) |