| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqusf1o.b |
|- B = ( Base ` G ) |
| 2 |
|
nsgqusf1o.s |
|- S = { h e. ( SubGrp ` G ) | N C_ h } |
| 3 |
|
nsgqusf1o.t |
|- T = ( SubGrp ` Q ) |
| 4 |
|
nsgqusf1o.1 |
|- .<_ = ( le ` ( toInc ` S ) ) |
| 5 |
|
nsgqusf1o.2 |
|- .c_ = ( le ` ( toInc ` T ) ) |
| 6 |
|
nsgqusf1o.q |
|- Q = ( G /s ( G ~QG N ) ) |
| 7 |
|
nsgqusf1o.p |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
nsgqusf1o.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
| 9 |
|
nsgqusf1o.f |
|- F = ( f e. T |-> { a e. B | ( { a } .(+) N ) e. f } ) |
| 10 |
|
nsgqusf1o.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
| 11 |
|
simpr |
|- ( ( ( ph /\ h e. S ) /\ f = ran ( x e. h |-> ( { x } .(+) N ) ) ) -> f = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
| 12 |
2
|
reqabi |
|- ( h e. S <-> ( h e. ( SubGrp ` G ) /\ N C_ h ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. T ) |
| 14 |
13
|
anasss |
|- ( ( ph /\ ( h e. ( SubGrp ` G ) /\ N C_ h ) ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. T ) |
| 15 |
14 3
|
eleqtrdi |
|- ( ( ph /\ ( h e. ( SubGrp ` G ) /\ N C_ h ) ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) ) |
| 16 |
12 15
|
sylan2b |
|- ( ( ph /\ h e. S ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) ) |
| 17 |
16
|
adantr |
|- ( ( ( ph /\ h e. S ) /\ f = ran ( x e. h |-> ( { x } .(+) N ) ) ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. ( SubGrp ` Q ) ) |
| 18 |
11 17
|
eqeltrd |
|- ( ( ( ph /\ h e. S ) /\ f = ran ( x e. h |-> ( { x } .(+) N ) ) ) -> f e. ( SubGrp ` Q ) ) |
| 19 |
18
|
r19.29an |
|- ( ( ph /\ E. h e. S f = ran ( x e. h |-> ( { x } .(+) N ) ) ) -> f e. ( SubGrp ` Q ) ) |
| 20 |
|
sseq2 |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ( N C_ h <-> N C_ { a e. B | ( { a } .(+) N ) e. f } ) ) |
| 21 |
10
|
adantr |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> N e. ( NrmSGrp ` G ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> f e. ( SubGrp ` Q ) ) |
| 23 |
1 6 7 21 22
|
nsgmgclem |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) |
| 24 |
3
|
eleq2i |
|- ( f e. T <-> f e. ( SubGrp ` Q ) ) |
| 25 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 26 |
10 25
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
| 27 |
1
|
subgss |
|- ( N e. ( SubGrp ` G ) -> N C_ B ) |
| 28 |
26 27
|
syl |
|- ( ph -> N C_ B ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ f e. T ) -> N C_ B ) |
| 30 |
26
|
ad2antrr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. ( SubGrp ` G ) ) |
| 31 |
7
|
grplsmid |
|- ( ( N e. ( SubGrp ` G ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
| 32 |
30 31
|
sylancom |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
| 33 |
24
|
biimpi |
|- ( f e. T -> f e. ( SubGrp ` Q ) ) |
| 34 |
6
|
nsgqus0 |
|- ( ( N e. ( NrmSGrp ` G ) /\ f e. ( SubGrp ` Q ) ) -> N e. f ) |
| 35 |
10 33 34
|
syl2an |
|- ( ( ph /\ f e. T ) -> N e. f ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. f ) |
| 37 |
32 36
|
eqeltrd |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) e. f ) |
| 38 |
29 37
|
ssrabdv |
|- ( ( ph /\ f e. T ) -> N C_ { a e. B | ( { a } .(+) N ) e. f } ) |
| 39 |
24 38
|
sylan2br |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> N C_ { a e. B | ( { a } .(+) N ) e. f } ) |
| 40 |
20 23 39
|
elrabd |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> { a e. B | ( { a } .(+) N ) e. f } e. { h e. ( SubGrp ` G ) | N C_ h } ) |
| 41 |
40 2
|
eleqtrrdi |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> { a e. B | ( { a } .(+) N ) e. f } e. S ) |
| 42 |
|
mpteq1 |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ( x e. h |-> ( { x } .(+) N ) ) = ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) |
| 43 |
42
|
rneqd |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ran ( x e. h |-> ( { x } .(+) N ) ) = ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) |
| 44 |
43
|
eqeq2d |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ( f = ran ( x e. h |-> ( { x } .(+) N ) ) <-> f = ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> ( f = ran ( x e. h |-> ( { x } .(+) N ) ) <-> f = ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) ) |
| 46 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 47 |
46
|
subgss |
|- ( f e. ( SubGrp ` Q ) -> f C_ ( Base ` Q ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> f C_ ( Base ` Q ) ) |
| 49 |
48
|
sselda |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> i e. ( Base ` Q ) ) |
| 50 |
6
|
a1i |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> Q = ( G /s ( G ~QG N ) ) ) |
| 51 |
1
|
a1i |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> B = ( Base ` G ) ) |
| 52 |
|
ovexd |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> ( G ~QG N ) e. _V ) |
| 53 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
| 54 |
26 53
|
syl |
|- ( ph -> G e. Grp ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> G e. Grp ) |
| 56 |
50 51 52 55
|
qusbas |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> ( B /. ( G ~QG N ) ) = ( Base ` Q ) ) |
| 57 |
49 56
|
eleqtrrd |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> i e. ( B /. ( G ~QG N ) ) ) |
| 58 |
|
elqsi |
|- ( i e. ( B /. ( G ~QG N ) ) -> E. x e. B i = [ x ] ( G ~QG N ) ) |
| 59 |
57 58
|
syl |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> E. x e. B i = [ x ] ( G ~QG N ) ) |
| 60 |
|
sneq |
|- ( a = x -> { a } = { x } ) |
| 61 |
60
|
oveq1d |
|- ( a = x -> ( { a } .(+) N ) = ( { x } .(+) N ) ) |
| 62 |
61
|
eleq1d |
|- ( a = x -> ( ( { a } .(+) N ) e. f <-> ( { x } .(+) N ) e. f ) ) |
| 63 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> x e. B ) |
| 64 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> i = [ x ] ( G ~QG N ) ) |
| 65 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> N e. ( SubGrp ` G ) ) |
| 66 |
1 7 65 63
|
quslsm |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
| 67 |
64 66
|
eqtrd |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> i = ( { x } .(+) N ) ) |
| 68 |
|
simpllr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> i e. f ) |
| 69 |
67 68
|
eqeltrrd |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> ( { x } .(+) N ) e. f ) |
| 70 |
62 63 69
|
elrabd |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> x e. { a e. B | ( { a } .(+) N ) e. f } ) |
| 71 |
70 67
|
jca |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) /\ x e. B ) /\ i = [ x ] ( G ~QG N ) ) -> ( x e. { a e. B | ( { a } .(+) N ) e. f } /\ i = ( { x } .(+) N ) ) ) |
| 72 |
71
|
expl |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> ( ( x e. B /\ i = [ x ] ( G ~QG N ) ) -> ( x e. { a e. B | ( { a } .(+) N ) e. f } /\ i = ( { x } .(+) N ) ) ) ) |
| 73 |
72
|
reximdv2 |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> ( E. x e. B i = [ x ] ( G ~QG N ) -> E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) ) |
| 74 |
59 73
|
mpd |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i e. f ) -> E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) |
| 75 |
|
simplr |
|- ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ x e. { a e. B | ( { a } .(+) N ) e. f } ) /\ i = ( { x } .(+) N ) ) -> x e. { a e. B | ( { a } .(+) N ) e. f } ) |
| 76 |
62
|
elrab |
|- ( x e. { a e. B | ( { a } .(+) N ) e. f } <-> ( x e. B /\ ( { x } .(+) N ) e. f ) ) |
| 77 |
75 76
|
sylib |
|- ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ x e. { a e. B | ( { a } .(+) N ) e. f } ) /\ i = ( { x } .(+) N ) ) -> ( x e. B /\ ( { x } .(+) N ) e. f ) ) |
| 78 |
|
simpllr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i = ( { x } .(+) N ) ) /\ x e. B ) /\ ( { x } .(+) N ) e. f ) -> i = ( { x } .(+) N ) ) |
| 79 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i = ( { x } .(+) N ) ) /\ x e. B ) /\ ( { x } .(+) N ) e. f ) -> ( { x } .(+) N ) e. f ) |
| 80 |
78 79
|
eqeltrd |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i = ( { x } .(+) N ) ) /\ x e. B ) /\ ( { x } .(+) N ) e. f ) -> i e. f ) |
| 81 |
80
|
anasss |
|- ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ i = ( { x } .(+) N ) ) /\ ( x e. B /\ ( { x } .(+) N ) e. f ) ) -> i e. f ) |
| 82 |
81
|
adantllr |
|- ( ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ x e. { a e. B | ( { a } .(+) N ) e. f } ) /\ i = ( { x } .(+) N ) ) /\ ( x e. B /\ ( { x } .(+) N ) e. f ) ) -> i e. f ) |
| 83 |
77 82
|
mpdan |
|- ( ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ x e. { a e. B | ( { a } .(+) N ) e. f } ) /\ i = ( { x } .(+) N ) ) -> i e. f ) |
| 84 |
83
|
r19.29an |
|- ( ( ( ph /\ f e. ( SubGrp ` Q ) ) /\ E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) -> i e. f ) |
| 85 |
74 84
|
impbida |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> ( i e. f <-> E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) ) |
| 86 |
|
eqid |
|- ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) = ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) |
| 87 |
86
|
elrnmpt |
|- ( i e. _V -> ( i e. ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) <-> E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) ) |
| 88 |
87
|
elv |
|- ( i e. ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) <-> E. x e. { a e. B | ( { a } .(+) N ) e. f } i = ( { x } .(+) N ) ) |
| 89 |
85 88
|
bitr4di |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> ( i e. f <-> i e. ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) ) |
| 90 |
89
|
eqrdv |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> f = ran ( x e. { a e. B | ( { a } .(+) N ) e. f } |-> ( { x } .(+) N ) ) ) |
| 91 |
41 45 90
|
rspcedvd |
|- ( ( ph /\ f e. ( SubGrp ` Q ) ) -> E. h e. S f = ran ( x e. h |-> ( { x } .(+) N ) ) ) |
| 92 |
19 91
|
impbida |
|- ( ph -> ( E. h e. S f = ran ( x e. h |-> ( { x } .(+) N ) ) <-> f e. ( SubGrp ` Q ) ) ) |
| 93 |
92
|
abbidv |
|- ( ph -> { f | E. h e. S f = ran ( x e. h |-> ( { x } .(+) N ) ) } = { f | f e. ( SubGrp ` Q ) } ) |
| 94 |
8
|
rnmpt |
|- ran E = { f | E. h e. S f = ran ( x e. h |-> ( { x } .(+) N ) ) } |
| 95 |
|
abid1 |
|- ( SubGrp ` Q ) = { f | f e. ( SubGrp ` Q ) } |
| 96 |
93 94 95
|
3eqtr4g |
|- ( ph -> ran E = ( SubGrp ` Q ) ) |
| 97 |
96 3
|
eqtr4di |
|- ( ph -> ran E = T ) |