Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nsgqusf1o.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
3 |
|
nsgqusf1o.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
4 |
|
nsgqusf1o.1 |
⊢ ≤ = ( le ‘ ( toInc ‘ 𝑆 ) ) |
5 |
|
nsgqusf1o.2 |
⊢ ≲ = ( le ‘ ( toInc ‘ 𝑇 ) ) |
6 |
|
nsgqusf1o.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
7 |
|
nsgqusf1o.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
8 |
|
nsgqusf1o.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
9 |
|
nsgqusf1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
10 |
|
nsgqusf1o.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
12 |
2
|
rabeq2i |
⊢ ( ℎ ∈ 𝑆 ↔ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |
14 |
13
|
anasss |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |
15 |
14 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
16 |
12 15
|
sylan2b |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
18 |
11 17
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
19 |
18
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
20 |
|
sseq2 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑁 ⊆ ℎ ↔ 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
23 |
1 6 7 21 22
|
nsgmgclem |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) |
24 |
3
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑇 ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
25 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
10 25
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
27 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐵 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ 𝐵 ) |
30 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
31 |
7
|
grplsmid |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
32 |
30 31
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
33 |
24
|
biimpi |
⊢ ( 𝑓 ∈ 𝑇 → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
34 |
6
|
nsgqus0 |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝑓 ) |
35 |
10 33 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ 𝑓 ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ 𝑓 ) |
37 |
32 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ) |
38 |
29 37
|
ssrabdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
39 |
24 38
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
40 |
20 23 39
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } ) |
41 |
40 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ 𝑆 ) |
42 |
|
mpteq1 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
43 |
42
|
rneqd |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
44 |
43
|
eqeq2d |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
47 |
46
|
subgss |
⊢ ( 𝑓 ∈ ( SubGrp ‘ 𝑄 ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) ) |
49 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑖 ∈ ( Base ‘ 𝑄 ) ) |
50 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
51 |
1
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
52 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
53 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
54 |
26 53
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝐺 ∈ Grp ) |
56 |
50 51 52 55
|
qusbas |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
57 |
49 56
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) ) |
58 |
|
elqsi |
⊢ ( 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) → ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
59 |
57 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
60 |
|
sneq |
⊢ ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } ) |
61 |
60
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
62 |
61
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ↔ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
63 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
64 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
65 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
66 |
1 7 65 63
|
quslsm |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
67 |
64 66
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
69 |
67 68
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
70 |
62 63 69
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
71 |
70 67
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
72 |
71
|
expl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
73 |
72
|
reximdv2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
74 |
59 73
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
75 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
76 |
62
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
77 |
75 76
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
78 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
79 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
80 |
78 79
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → 𝑖 ∈ 𝑓 ) |
81 |
80
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) → 𝑖 ∈ 𝑓 ) |
82 |
81
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) → 𝑖 ∈ 𝑓 ) |
83 |
77 82
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
84 |
83
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
85 |
74 84
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖 ∈ 𝑓 ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
86 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
87 |
86
|
elrnmpt |
⊢ ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
88 |
87
|
elv |
⊢ ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
89 |
85 88
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖 ∈ 𝑓 ↔ 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
90 |
89
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
91 |
41 45 90
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
92 |
19 91
|
impbida |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ) |
93 |
92
|
abbidv |
⊢ ( 𝜑 → { 𝑓 ∣ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } = { 𝑓 ∣ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) } ) |
94 |
8
|
rnmpt |
⊢ ran 𝐸 = { 𝑓 ∣ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } |
95 |
|
abid1 |
⊢ ( SubGrp ‘ 𝑄 ) = { 𝑓 ∣ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) } |
96 |
93 94 95
|
3eqtr4g |
⊢ ( 𝜑 → ran 𝐸 = ( SubGrp ‘ 𝑄 ) ) |
97 |
96 3
|
eqtr4di |
⊢ ( 𝜑 → ran 𝐸 = 𝑇 ) |