| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqusf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
nsgqusf1o.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
| 3 |
|
nsgqusf1o.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
| 4 |
|
nsgqusf1o.1 |
⊢ ≤ = ( le ‘ ( toInc ‘ 𝑆 ) ) |
| 5 |
|
nsgqusf1o.2 |
⊢ ≲ = ( le ‘ ( toInc ‘ 𝑇 ) ) |
| 6 |
|
nsgqusf1o.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 7 |
|
nsgqusf1o.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 8 |
|
nsgqusf1o.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 9 |
|
nsgqusf1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 10 |
|
nsgqusf1o.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 12 |
2
|
reqabi |
⊢ ( ℎ ∈ 𝑆 ↔ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |
| 14 |
13
|
anasss |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |
| 15 |
14 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
| 16 |
12 15
|
sylan2b |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
| 18 |
11 17
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
| 19 |
18
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
| 20 |
|
sseq2 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑁 ⊆ ℎ ↔ 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
| 23 |
1 6 7 21 22
|
nsgmgclem |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 |
3
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑇 ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
| 25 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 26 |
10 25
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 27 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝐵 ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐵 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ 𝐵 ) |
| 30 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 31 |
7
|
grplsmid |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
| 32 |
30 31
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
| 33 |
24
|
biimpi |
⊢ ( 𝑓 ∈ 𝑇 → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
| 34 |
6
|
nsgqus0 |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝑓 ) |
| 35 |
10 33 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ 𝑓 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ 𝑓 ) |
| 37 |
32 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ) |
| 38 |
29 37
|
ssrabdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 39 |
24 38
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 40 |
20 23 39
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } ) |
| 41 |
40 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ 𝑆 ) |
| 42 |
|
mpteq1 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 43 |
42
|
rneqd |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 47 |
46
|
subgss |
⊢ ( 𝑓 ∈ ( SubGrp ‘ 𝑄 ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) ) |
| 49 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑖 ∈ ( Base ‘ 𝑄 ) ) |
| 50 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
| 51 |
1
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 52 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
| 53 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 54 |
26 53
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝐺 ∈ Grp ) |
| 56 |
50 51 52 55
|
qusbas |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 57 |
49 56
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) ) |
| 58 |
|
elqsi |
⊢ ( 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) → ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 60 |
|
sneq |
⊢ ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } ) |
| 61 |
60
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ↔ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
| 63 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
| 64 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 65 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 66 |
1 7 65 63
|
quslsm |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 67 |
64 66
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
| 69 |
67 68
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
| 70 |
62 63 69
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 71 |
70 67
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 72 |
71
|
expl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
| 73 |
72
|
reximdv2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ( ∃ 𝑥 ∈ 𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 74 |
59 73
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 ∈ 𝑓 ) → ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 75 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 76 |
62
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
| 77 |
75 76
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) |
| 78 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 79 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) |
| 80 |
78 79
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) → 𝑖 ∈ 𝑓 ) |
| 81 |
80
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) → 𝑖 ∈ 𝑓 ) |
| 82 |
81
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ ( { 𝑥 } ⊕ 𝑁 ) ∈ 𝑓 ) ) → 𝑖 ∈ 𝑓 ) |
| 83 |
77 82
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
| 84 |
83
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 ∈ 𝑓 ) |
| 85 |
74 84
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖 ∈ 𝑓 ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 86 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
| 87 |
86
|
elrnmpt |
⊢ ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 88 |
87
|
elv |
⊢ ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
| 89 |
85 88
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖 ∈ 𝑓 ↔ 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
| 90 |
89
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 = ran ( 𝑥 ∈ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 91 |
41 45 90
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 92 |
19 91
|
impbida |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ) |
| 93 |
92
|
abbidv |
⊢ ( 𝜑 → { 𝑓 ∣ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } = { 𝑓 ∣ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) } ) |
| 94 |
8
|
rnmpt |
⊢ ran 𝐸 = { 𝑓 ∣ ∃ ℎ ∈ 𝑆 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } |
| 95 |
|
abid1 |
⊢ ( SubGrp ‘ 𝑄 ) = { 𝑓 ∣ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) } |
| 96 |
93 94 95
|
3eqtr4g |
⊢ ( 𝜑 → ran 𝐸 = ( SubGrp ‘ 𝑄 ) ) |
| 97 |
96 3
|
eqtr4di |
⊢ ( 𝜑 → ran 𝐸 = 𝑇 ) |