Metamath Proof Explorer


Theorem nsgqusf1olem2

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
nsgqusf1o.p = ( LSSum ‘ 𝐺 )
nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion nsgqusf1olem2 ( 𝜑 → ran 𝐸 = 𝑇 )

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
2 nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
3 nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
4 nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
5 nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
6 nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
7 nsgqusf1o.p = ( LSSum ‘ 𝐺 )
8 nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
9 nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
10 nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
11 simpr ( ( ( 𝜑𝑆 ) ∧ 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
12 2 rabeq2i ( 𝑆 ↔ ( ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ) )
13 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem1 ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ 𝑇 )
14 13 anasss ( ( 𝜑 ∧ ( ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ) ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ 𝑇 )
15 14 3 eleqtrdi ( ( 𝜑 ∧ ( ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ) ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) )
16 12 15 sylan2b ( ( 𝜑𝑆 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) )
17 16 adantr ( ( ( 𝜑𝑆 ) ∧ 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) )
18 11 17 eqeltrd ( ( ( 𝜑𝑆 ) ∧ 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
19 18 r19.29an ( ( 𝜑 ∧ ∃ 𝑆 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
20 sseq2 ( = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ( 𝑁𝑁 ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) )
21 10 adantr ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
22 simpr ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
23 1 6 7 21 22 nsgmgclem ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) )
24 3 eleq2i ( 𝑓𝑇𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
25 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
26 10 25 syl ( 𝜑𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
27 1 subgss ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁𝐵 )
28 26 27 syl ( 𝜑𝑁𝐵 )
29 28 adantr ( ( 𝜑𝑓𝑇 ) → 𝑁𝐵 )
30 26 ad2antrr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
31 7 grplsmid ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) = 𝑁 )
32 30 31 sylancom ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) = 𝑁 )
33 24 biimpi ( 𝑓𝑇𝑓 ∈ ( SubGrp ‘ 𝑄 ) )
34 6 nsgqus0 ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁𝑓 )
35 10 33 34 syl2an ( ( 𝜑𝑓𝑇 ) → 𝑁𝑓 )
36 35 adantr ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → 𝑁𝑓 )
37 32 36 eqeltrd ( ( ( 𝜑𝑓𝑇 ) ∧ 𝑎𝑁 ) → ( { 𝑎 } 𝑁 ) ∈ 𝑓 )
38 29 37 ssrabdv ( ( 𝜑𝑓𝑇 ) → 𝑁 ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
39 24 38 sylan2br ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ⊆ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
40 20 23 39 elrabd ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 } )
41 40 2 eleqtrrdi ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∈ 𝑆 )
42 mpteq1 ( = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) )
43 42 rneqd ( = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) )
44 43 eqeq2d ( = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } → ( 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) ) )
45 44 adantl ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ = { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) → ( 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ↔ 𝑓 = ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) ) )
46 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
47 46 subgss ( 𝑓 ∈ ( SubGrp ‘ 𝑄 ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) )
48 47 adantl ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 ⊆ ( Base ‘ 𝑄 ) )
49 48 sselda ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → 𝑖 ∈ ( Base ‘ 𝑄 ) )
50 6 a1i ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) )
51 1 a1i ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → 𝐵 = ( Base ‘ 𝐺 ) )
52 ovexd ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ( 𝐺 ~QG 𝑁 ) ∈ V )
53 subgrcl ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
54 26 53 syl ( 𝜑𝐺 ∈ Grp )
55 54 ad2antrr ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → 𝐺 ∈ Grp )
56 50 51 52 55 qusbas ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
57 49 56 eleqtrrd ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) )
58 elqsi ( 𝑖 ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) → ∃ 𝑥𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
59 57 58 syl ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ∃ 𝑥𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
60 sneq ( 𝑎 = 𝑥 → { 𝑎 } = { 𝑥 } )
61 60 oveq1d ( 𝑎 = 𝑥 → ( { 𝑎 } 𝑁 ) = ( { 𝑥 } 𝑁 ) )
62 61 eleq1d ( 𝑎 = 𝑥 → ( ( { 𝑎 } 𝑁 ) ∈ 𝑓 ↔ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) )
63 simplr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥𝐵 )
64 simpr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
65 26 ad4antr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
66 1 7 65 63 quslsm ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } 𝑁 ) )
67 64 66 eqtrd ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖 = ( { 𝑥 } 𝑁 ) )
68 simpllr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑖𝑓 )
69 67 68 eqeltrrd ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( { 𝑥 } 𝑁 ) ∈ 𝑓 )
70 62 63 69 elrabd ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
71 70 67 jca ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) ∧ 𝑥𝐵 ) ∧ 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) )
72 71 expl ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ( ( 𝑥𝐵𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ) )
73 72 reximdv2 ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ( ∃ 𝑥𝐵 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) ) )
74 59 73 mpd ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖𝑓 ) → ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) )
75 simplr ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
76 62 elrab ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↔ ( 𝑥𝐵 ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) )
77 75 76 sylib ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( 𝑥𝐵 ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) )
78 simpllr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑥𝐵 ) ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) → 𝑖 = ( { 𝑥 } 𝑁 ) )
79 simpr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑥𝐵 ) ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) → ( { 𝑥 } 𝑁 ) ∈ 𝑓 )
80 78 79 eqeltrd ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑥𝐵 ) ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) → 𝑖𝑓 )
81 80 anasss ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ ( 𝑥𝐵 ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) ) → 𝑖𝑓 )
82 81 adantllr ( ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ ( 𝑥𝐵 ∧ ( { 𝑥 } 𝑁 ) ∈ 𝑓 ) ) → 𝑖𝑓 )
83 77 82 mpdan ( ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑖𝑓 )
84 83 r19.29an ( ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) ∧ ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑖𝑓 )
85 74 84 impbida ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖𝑓 ↔ ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) ) )
86 eqid ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) )
87 86 elrnmpt ( 𝑖 ∈ V → ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) ) )
88 87 elv ( 𝑖 ∈ ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) ↔ ∃ 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } 𝑖 = ( { 𝑥 } 𝑁 ) )
89 85 88 bitr4di ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ( 𝑖𝑓𝑖 ∈ ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) ) )
90 89 eqrdv ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑓 = ran ( 𝑥 ∈ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } ↦ ( { 𝑥 } 𝑁 ) ) )
91 41 45 90 rspcedvd ( ( 𝜑𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → ∃ 𝑆 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
92 19 91 impbida ( 𝜑 → ( ∃ 𝑆 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) )
93 92 abbidv ( 𝜑 → { 𝑓 ∣ ∃ 𝑆 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) } = { 𝑓𝑓 ∈ ( SubGrp ‘ 𝑄 ) } )
94 8 rnmpt ran 𝐸 = { 𝑓 ∣ ∃ 𝑆 𝑓 = ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) }
95 abid1 ( SubGrp ‘ 𝑄 ) = { 𝑓𝑓 ∈ ( SubGrp ‘ 𝑄 ) }
96 93 94 95 3eqtr4g ( 𝜑 → ran 𝐸 = ( SubGrp ‘ 𝑄 ) )
97 96 3 eqtr4di ( 𝜑 → ran 𝐸 = 𝑇 )