| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqusf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
nsgqusf1o.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
| 3 |
|
nsgqusf1o.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
| 4 |
|
nsgqusf1o.1 |
⊢ ≤ = ( le ‘ ( toInc ‘ 𝑆 ) ) |
| 5 |
|
nsgqusf1o.2 |
⊢ ≲ = ( le ‘ ( toInc ‘ 𝑇 ) ) |
| 6 |
|
nsgqusf1o.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 7 |
|
nsgqusf1o.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 8 |
|
nsgqusf1o.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
| 9 |
|
nsgqusf1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
| 10 |
|
nsgqusf1o.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 11 |
|
eqid |
⊢ ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) ) = ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) ) |
| 12 |
|
fvex |
⊢ ( SubGrp ‘ 𝐺 ) ∈ V |
| 13 |
2 12
|
rabex2 |
⊢ 𝑆 ∈ V |
| 14 |
|
eqid |
⊢ ( toInc ‘ 𝑆 ) = ( toInc ‘ 𝑆 ) |
| 15 |
14
|
ipobas |
⊢ ( 𝑆 ∈ V → 𝑆 = ( Base ‘ ( toInc ‘ 𝑆 ) ) ) |
| 16 |
13 15
|
ax-mp |
⊢ 𝑆 = ( Base ‘ ( toInc ‘ 𝑆 ) ) |
| 17 |
3
|
fvexi |
⊢ 𝑇 ∈ V |
| 18 |
|
eqid |
⊢ ( toInc ‘ 𝑇 ) = ( toInc ‘ 𝑇 ) |
| 19 |
18
|
ipobas |
⊢ ( 𝑇 ∈ V → 𝑇 = ( Base ‘ ( toInc ‘ 𝑇 ) ) ) |
| 20 |
17 19
|
ax-mp |
⊢ 𝑇 = ( Base ‘ ( toInc ‘ 𝑇 ) ) |
| 21 |
14
|
ipopos |
⊢ ( toInc ‘ 𝑆 ) ∈ Poset |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ( toInc ‘ 𝑆 ) ∈ Poset ) |
| 23 |
18
|
ipopos |
⊢ ( toInc ‘ 𝑇 ) ∈ Poset |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( toInc ‘ 𝑇 ) ∈ Poset ) |
| 25 |
1 2 3 11 14 18 6 7 8 9 10
|
nsgmgc |
⊢ ( 𝜑 → 𝐸 ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) ) 𝐹 ) |
| 26 |
11 16 20 4 5 22 24 25
|
mgcf1o |
⊢ ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) Isom ≤ , ≲ ( ran 𝐹 , ran 𝐸 ) ) |
| 27 |
|
isof1o |
⊢ ( ( 𝐸 ↾ ran 𝐹 ) Isom ≤ , ≲ ( ran 𝐹 , ran 𝐸 ) → ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹 –1-1-onto→ ran 𝐸 ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹 –1-1-onto→ ran 𝐸 ) |
| 29 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem3 |
⊢ ( 𝜑 → ran 𝐹 = 𝑆 ) |
| 30 |
29
|
reseq2d |
⊢ ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) = ( 𝐸 ↾ 𝑆 ) ) |
| 31 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
| 32 |
|
vex |
⊢ ℎ ∈ V |
| 33 |
32
|
mptex |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V |
| 34 |
33
|
rnex |
⊢ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑆 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ V ) |
| 36 |
31 35 8
|
fnmptd |
⊢ ( 𝜑 → 𝐸 Fn 𝑆 ) |
| 37 |
|
fnresdm |
⊢ ( 𝐸 Fn 𝑆 → ( 𝐸 ↾ 𝑆 ) = 𝐸 ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾ 𝑆 ) = 𝐸 ) |
| 39 |
30 38
|
eqtrd |
⊢ ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) = 𝐸 ) |
| 40 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem2 |
⊢ ( 𝜑 → ran 𝐸 = 𝑇 ) |
| 41 |
39 29 40
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹 –1-1-onto→ ran 𝐸 ↔ 𝐸 : 𝑆 –1-1-onto→ 𝑇 ) ) |
| 42 |
28 41
|
mpbid |
⊢ ( 𝜑 → 𝐸 : 𝑆 –1-1-onto→ 𝑇 ) |