Metamath Proof Explorer


Theorem nsgqusf1o

Description: The canonical projection homomorphism E defines a bijective correspondence between the set S of subgroups of G containing a normal subgroup N and the subgroups of the quotient group G / N . This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
nsgqusf1o.p = ( LSSum ‘ 𝐺 )
nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion nsgqusf1o ( 𝜑𝐸 : 𝑆1-1-onto𝑇 )

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
2 nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
3 nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
4 nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
5 nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
6 nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
7 nsgqusf1o.p = ( LSSum ‘ 𝐺 )
8 nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
9 nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
10 nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
11 eqid ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) ) = ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) )
12 fvex ( SubGrp ‘ 𝐺 ) ∈ V
13 2 12 rabex2 𝑆 ∈ V
14 eqid ( toInc ‘ 𝑆 ) = ( toInc ‘ 𝑆 )
15 14 ipobas ( 𝑆 ∈ V → 𝑆 = ( Base ‘ ( toInc ‘ 𝑆 ) ) )
16 13 15 ax-mp 𝑆 = ( Base ‘ ( toInc ‘ 𝑆 ) )
17 3 fvexi 𝑇 ∈ V
18 eqid ( toInc ‘ 𝑇 ) = ( toInc ‘ 𝑇 )
19 18 ipobas ( 𝑇 ∈ V → 𝑇 = ( Base ‘ ( toInc ‘ 𝑇 ) ) )
20 17 19 ax-mp 𝑇 = ( Base ‘ ( toInc ‘ 𝑇 ) )
21 14 ipopos ( toInc ‘ 𝑆 ) ∈ Poset
22 21 a1i ( 𝜑 → ( toInc ‘ 𝑆 ) ∈ Poset )
23 18 ipopos ( toInc ‘ 𝑇 ) ∈ Poset
24 23 a1i ( 𝜑 → ( toInc ‘ 𝑇 ) ∈ Poset )
25 1 2 3 11 14 18 6 7 8 9 10 nsgmgc ( 𝜑𝐸 ( ( toInc ‘ 𝑆 ) MGalConn ( toInc ‘ 𝑇 ) ) 𝐹 )
26 11 16 20 4 5 22 24 25 mgcf1o ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) Isom , ( ran 𝐹 , ran 𝐸 ) )
27 isof1o ( ( 𝐸 ↾ ran 𝐹 ) Isom , ( ran 𝐹 , ran 𝐸 ) → ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹1-1-onto→ ran 𝐸 )
28 26 27 syl ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹1-1-onto→ ran 𝐸 )
29 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem3 ( 𝜑 → ran 𝐹 = 𝑆 )
30 29 reseq2d ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) = ( 𝐸𝑆 ) )
31 nfv 𝜑
32 vex ∈ V
33 32 mptex ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V
34 33 rnex ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V
35 34 a1i ( ( 𝜑𝑆 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ V )
36 31 35 8 fnmptd ( 𝜑𝐸 Fn 𝑆 )
37 fnresdm ( 𝐸 Fn 𝑆 → ( 𝐸𝑆 ) = 𝐸 )
38 36 37 syl ( 𝜑 → ( 𝐸𝑆 ) = 𝐸 )
39 30 38 eqtrd ( 𝜑 → ( 𝐸 ↾ ran 𝐹 ) = 𝐸 )
40 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem2 ( 𝜑 → ran 𝐸 = 𝑇 )
41 39 29 40 f1oeq123d ( 𝜑 → ( ( 𝐸 ↾ ran 𝐹 ) : ran 𝐹1-1-onto→ ran 𝐸𝐸 : 𝑆1-1-onto𝑇 ) )
42 28 41 mpbid ( 𝜑𝐸 : 𝑆1-1-onto𝑇 )