Metamath Proof Explorer


Theorem ipopos

Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis ipopos.i 𝐼 = ( toInc ‘ 𝐹 )
Assertion ipopos 𝐼 ∈ Poset

Proof

Step Hyp Ref Expression
1 ipopos.i 𝐼 = ( toInc ‘ 𝐹 )
2 1 fvexi 𝐼 ∈ V
3 2 a1i ( 𝐹 ∈ V → 𝐼 ∈ V )
4 1 ipobas ( 𝐹 ∈ V → 𝐹 = ( Base ‘ 𝐼 ) )
5 eqidd ( 𝐹 ∈ V → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) )
6 ssid 𝑎𝑎
7 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
8 1 7 ipole ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎𝑎𝑎 ) )
9 8 3anidm23 ( ( 𝐹 ∈ V ∧ 𝑎𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎𝑎𝑎 ) )
10 6 9 mpbiri ( ( 𝐹 ∈ V ∧ 𝑎𝐹 ) → 𝑎 ( le ‘ 𝐼 ) 𝑎 )
11 1 7 ipole ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑎𝑏 ) )
12 1 7 ipole ( ( 𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎𝑏𝑎 ) )
13 12 3com23 ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎𝑏𝑎 ) )
14 11 13 anbi12d ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑏 ( le ‘ 𝐼 ) 𝑎 ) ↔ ( 𝑎𝑏𝑏𝑎 ) ) )
15 simpl ( ( 𝑎𝑏𝑏𝑎 ) → 𝑎𝑏 )
16 simpr ( ( 𝑎𝑏𝑏𝑎 ) → 𝑏𝑎 )
17 15 16 eqssd ( ( 𝑎𝑏𝑏𝑎 ) → 𝑎 = 𝑏 )
18 14 17 syl6bi ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑏 ( le ‘ 𝐼 ) 𝑎 ) → 𝑎 = 𝑏 ) )
19 sstr ( ( 𝑎𝑏𝑏𝑐 ) → 𝑎𝑐 )
20 19 a1i ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( ( 𝑎𝑏𝑏𝑐 ) → 𝑎𝑐 ) )
21 11 3adant3r3 ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑎𝑏 ) )
22 1 7 ipole ( ( 𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐𝑏𝑐 ) )
23 22 3adant3r1 ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐𝑏𝑐 ) )
24 21 23 anbi12d ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑏 ( le ‘ 𝐼 ) 𝑐 ) ↔ ( 𝑎𝑏𝑏𝑐 ) ) )
25 1 7 ipole ( ( 𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐𝑎𝑐 ) )
26 25 3adant3r2 ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐𝑎𝑐 ) )
27 20 24 26 3imtr4d ( ( 𝐹 ∈ V ∧ ( 𝑎𝐹𝑏𝐹𝑐𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏𝑏 ( le ‘ 𝐼 ) 𝑐 ) → 𝑎 ( le ‘ 𝐼 ) 𝑐 ) )
28 3 4 5 10 18 27 isposd ( 𝐹 ∈ V → 𝐼 ∈ Poset )
29 fvprc ( ¬ 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ∅ )
30 1 29 syl5eq ( ¬ 𝐹 ∈ V → 𝐼 = ∅ )
31 0pos ∅ ∈ Poset
32 30 31 eqeltrdi ( ¬ 𝐹 ∈ V → 𝐼 ∈ Poset )
33 28 32 pm2.61i 𝐼 ∈ Poset