Metamath Proof Explorer


Theorem ipole

Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
ipole.l = ( le ‘ 𝐼 )
Assertion ipole ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 𝑌𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipole.l = ( le ‘ 𝐼 )
3 preq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → { 𝑥 , 𝑦 } = { 𝑋 , 𝑌 } )
4 3 sseq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( { 𝑥 , 𝑦 } ⊆ 𝐹 ↔ { 𝑋 , 𝑌 } ⊆ 𝐹 ) )
5 sseq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥𝑦𝑋𝑌 ) )
6 4 5 anbi12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹𝑋𝑌 ) ) )
7 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
8 6 7 brabga ( ( 𝑋𝐹𝑌𝐹 ) → ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹𝑋𝑌 ) ) )
9 8 3adant1 ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹𝑋𝑌 ) ) )
10 1 ipolerval ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ 𝐼 ) )
11 2 10 eqtr4id ( 𝐹𝑉 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } )
12 11 breqd ( 𝐹𝑉 → ( 𝑋 𝑌𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } 𝑌 ) )
13 12 3ad2ant1 ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 𝑌𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } 𝑌 ) )
14 prssi ( ( 𝑋𝐹𝑌𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 )
15 14 3adant1 ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 )
16 15 biantrurd ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹𝑋𝑌 ) ) )
17 9 13 16 3bitr4d ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 𝑌𝑋𝑌 ) )