| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolt.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipolt.l |
⊢ < = ( lt ‘ 𝐼 ) |
| 3 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
| 4 |
1 3
|
ipole |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ↔ 𝑋 ⊆ 𝑌 ) ) |
| 5 |
4
|
anbi1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 6 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
| 7 |
3 2
|
pltval |
⊢ ( ( 𝐼 ∈ V ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 8 |
6 7
|
mp3an1 |
⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 9 |
8
|
3adant1 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 |
|
df-pss |
⊢ ( 𝑋 ⊊ 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ⊊ 𝑌 ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 12 |
5 9 11
|
3bitr4d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 < 𝑌 ↔ 𝑋 ⊊ 𝑌 ) ) |