Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
|- B = ( Base ` G ) |
2 |
|
nsgqusf1o.s |
|- S = { h e. ( SubGrp ` G ) | N C_ h } |
3 |
|
nsgqusf1o.t |
|- T = ( SubGrp ` Q ) |
4 |
|
nsgqusf1o.1 |
|- .<_ = ( le ` ( toInc ` S ) ) |
5 |
|
nsgqusf1o.2 |
|- .c_ = ( le ` ( toInc ` T ) ) |
6 |
|
nsgqusf1o.q |
|- Q = ( G /s ( G ~QG N ) ) |
7 |
|
nsgqusf1o.p |
|- .(+) = ( LSSum ` G ) |
8 |
|
nsgqusf1o.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
9 |
|
nsgqusf1o.f |
|- F = ( f e. T |-> { a e. B | ( { a } .(+) N ) e. f } ) |
10 |
|
nsgqusf1o.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
11 |
|
eqid |
|- ( ( toInc ` S ) MGalConn ( toInc ` T ) ) = ( ( toInc ` S ) MGalConn ( toInc ` T ) ) |
12 |
|
fvex |
|- ( SubGrp ` G ) e. _V |
13 |
2 12
|
rabex2 |
|- S e. _V |
14 |
|
eqid |
|- ( toInc ` S ) = ( toInc ` S ) |
15 |
14
|
ipobas |
|- ( S e. _V -> S = ( Base ` ( toInc ` S ) ) ) |
16 |
13 15
|
ax-mp |
|- S = ( Base ` ( toInc ` S ) ) |
17 |
3
|
fvexi |
|- T e. _V |
18 |
|
eqid |
|- ( toInc ` T ) = ( toInc ` T ) |
19 |
18
|
ipobas |
|- ( T e. _V -> T = ( Base ` ( toInc ` T ) ) ) |
20 |
17 19
|
ax-mp |
|- T = ( Base ` ( toInc ` T ) ) |
21 |
14
|
ipopos |
|- ( toInc ` S ) e. Poset |
22 |
21
|
a1i |
|- ( ph -> ( toInc ` S ) e. Poset ) |
23 |
18
|
ipopos |
|- ( toInc ` T ) e. Poset |
24 |
23
|
a1i |
|- ( ph -> ( toInc ` T ) e. Poset ) |
25 |
1 2 3 11 14 18 6 7 8 9 10
|
nsgmgc |
|- ( ph -> E ( ( toInc ` S ) MGalConn ( toInc ` T ) ) F ) |
26 |
11 16 20 4 5 22 24 25
|
mgcf1o |
|- ( ph -> ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) ) |
27 |
|
isof1o |
|- ( ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) |
28 |
26 27
|
syl |
|- ( ph -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem3 |
|- ( ph -> ran F = S ) |
30 |
29
|
reseq2d |
|- ( ph -> ( E |` ran F ) = ( E |` S ) ) |
31 |
|
nfv |
|- F/ h ph |
32 |
|
vex |
|- h e. _V |
33 |
32
|
mptex |
|- ( x e. h |-> ( { x } .(+) N ) ) e. _V |
34 |
33
|
rnex |
|- ran ( x e. h |-> ( { x } .(+) N ) ) e. _V |
35 |
34
|
a1i |
|- ( ( ph /\ h e. S ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. _V ) |
36 |
31 35 8
|
fnmptd |
|- ( ph -> E Fn S ) |
37 |
|
fnresdm |
|- ( E Fn S -> ( E |` S ) = E ) |
38 |
36 37
|
syl |
|- ( ph -> ( E |` S ) = E ) |
39 |
30 38
|
eqtrd |
|- ( ph -> ( E |` ran F ) = E ) |
40 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem2 |
|- ( ph -> ran E = T ) |
41 |
39 29 40
|
f1oeq123d |
|- ( ph -> ( ( E |` ran F ) : ran F -1-1-onto-> ran E <-> E : S -1-1-onto-> T ) ) |
42 |
28 41
|
mpbid |
|- ( ph -> E : S -1-1-onto-> T ) |