Step |
Hyp |
Ref |
Expression |
1 |
|
mgcf1o.h |
|- H = ( V MGalConn W ) |
2 |
|
mgcf1o.a |
|- A = ( Base ` V ) |
3 |
|
mgcf1o.b |
|- B = ( Base ` W ) |
4 |
|
mgcf1o.1 |
|- .<_ = ( le ` V ) |
5 |
|
mgcf1o.2 |
|- .c_ = ( le ` W ) |
6 |
|
mgcf1o.v |
|- ( ph -> V e. Poset ) |
7 |
|
mgcf1o.w |
|- ( ph -> W e. Poset ) |
8 |
|
mgcf1o.f |
|- ( ph -> F H G ) |
9 |
|
eqid |
|- ( x e. ran G |-> ( F ` x ) ) = ( x e. ran G |-> ( F ` x ) ) |
10 |
|
posprs |
|- ( V e. Poset -> V e. Proset ) |
11 |
6 10
|
syl |
|- ( ph -> V e. Proset ) |
12 |
|
posprs |
|- ( W e. Poset -> W e. Proset ) |
13 |
7 12
|
syl |
|- ( ph -> W e. Proset ) |
14 |
2 3 4 5 1 11 13
|
dfmgc2 |
|- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) |
15 |
8 14
|
mpbid |
|- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) |
16 |
15
|
simplld |
|- ( ph -> F : A --> B ) |
17 |
16
|
ffnd |
|- ( ph -> F Fn A ) |
18 |
15
|
simplrd |
|- ( ph -> G : B --> A ) |
19 |
18
|
frnd |
|- ( ph -> ran G C_ A ) |
20 |
19
|
sselda |
|- ( ( ph /\ x e. ran G ) -> x e. A ) |
21 |
|
fnfvelrn |
|- ( ( F Fn A /\ x e. A ) -> ( F ` x ) e. ran F ) |
22 |
17 20 21
|
syl2an2r |
|- ( ( ph /\ x e. ran G ) -> ( F ` x ) e. ran F ) |
23 |
18
|
ffnd |
|- ( ph -> G Fn B ) |
24 |
16
|
frnd |
|- ( ph -> ran F C_ B ) |
25 |
24
|
sselda |
|- ( ( ph /\ u e. ran F ) -> u e. B ) |
26 |
|
fnfvelrn |
|- ( ( G Fn B /\ u e. B ) -> ( G ` u ) e. ran G ) |
27 |
23 25 26
|
syl2an2r |
|- ( ( ph /\ u e. ran F ) -> ( G ` u ) e. ran G ) |
28 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> V e. Poset ) |
29 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> W e. Poset ) |
30 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> F H G ) |
31 |
|
simplr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> y e. A ) |
32 |
1 2 3 4 5 28 29 30 31
|
mgcf1olem1 |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> ( F ` ( G ` ( F ` y ) ) ) = ( F ` y ) ) |
33 |
|
simpr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> ( F ` y ) = u ) |
34 |
33
|
fveq2d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> ( G ` ( F ` y ) ) = ( G ` u ) ) |
35 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> x = ( G ` u ) ) |
36 |
34 35
|
eqtr4d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> ( G ` ( F ` y ) ) = x ) |
37 |
36
|
fveq2d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> ( F ` ( G ` ( F ` y ) ) ) = ( F ` x ) ) |
38 |
32 37 33
|
3eqtr3rd |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) /\ y e. A ) /\ ( F ` y ) = u ) -> u = ( F ` x ) ) |
39 |
17
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) -> F Fn A ) |
40 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) -> u e. ran F ) |
41 |
|
fvelrnb |
|- ( F Fn A -> ( u e. ran F <-> E. y e. A ( F ` y ) = u ) ) |
42 |
41
|
biimpa |
|- ( ( F Fn A /\ u e. ran F ) -> E. y e. A ( F ` y ) = u ) |
43 |
39 40 42
|
syl2anc |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) -> E. y e. A ( F ` y ) = u ) |
44 |
38 43
|
r19.29a |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ x = ( G ` u ) ) -> u = ( F ` x ) ) |
45 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> V e. Poset ) |
46 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> W e. Poset ) |
47 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> F H G ) |
48 |
|
simplr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> v e. B ) |
49 |
1 2 3 4 5 45 46 47 48
|
mgcf1olem2 |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> ( G ` ( F ` ( G ` v ) ) ) = ( G ` v ) ) |
50 |
|
simpr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> ( G ` v ) = x ) |
51 |
50
|
fveq2d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> ( F ` ( G ` v ) ) = ( F ` x ) ) |
52 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> u = ( F ` x ) ) |
53 |
51 52
|
eqtr4d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> ( F ` ( G ` v ) ) = u ) |
54 |
53
|
fveq2d |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> ( G ` ( F ` ( G ` v ) ) ) = ( G ` u ) ) |
55 |
49 54 50
|
3eqtr3rd |
|- ( ( ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) /\ v e. B ) /\ ( G ` v ) = x ) -> x = ( G ` u ) ) |
56 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) -> G Fn B ) |
57 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) -> x e. ran G ) |
58 |
|
fvelrnb |
|- ( G Fn B -> ( x e. ran G <-> E. v e. B ( G ` v ) = x ) ) |
59 |
58
|
biimpa |
|- ( ( G Fn B /\ x e. ran G ) -> E. v e. B ( G ` v ) = x ) |
60 |
56 57 59
|
syl2anc |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) -> E. v e. B ( G ` v ) = x ) |
61 |
55 60
|
r19.29a |
|- ( ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) /\ u = ( F ` x ) ) -> x = ( G ` u ) ) |
62 |
44 61
|
impbida |
|- ( ( ph /\ ( x e. ran G /\ u e. ran F ) ) -> ( x = ( G ` u ) <-> u = ( F ` x ) ) ) |
63 |
9 22 27 62
|
f1o2d |
|- ( ph -> ( x e. ran G |-> ( F ` x ) ) : ran G -1-1-onto-> ran F ) |
64 |
16 19
|
feqresmpt |
|- ( ph -> ( F |` ran G ) = ( x e. ran G |-> ( F ` x ) ) ) |
65 |
64
|
f1oeq1d |
|- ( ph -> ( ( F |` ran G ) : ran G -1-1-onto-> ran F <-> ( x e. ran G |-> ( F ` x ) ) : ran G -1-1-onto-> ran F ) ) |
66 |
63 65
|
mpbird |
|- ( ph -> ( F |` ran G ) : ran G -1-1-onto-> ran F ) |
67 |
|
simplll |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ph ) |
68 |
19
|
ad2antrr |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ran G C_ A ) |
69 |
|
simplr |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> x e. ran G ) |
70 |
68 69
|
sseldd |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> x e. A ) |
71 |
70
|
adantr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> x e. A ) |
72 |
|
simpr |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> y e. ran G ) |
73 |
68 72
|
sseldd |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> y e. A ) |
74 |
73
|
adantr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> y e. A ) |
75 |
|
simpr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> x .<_ y ) |
76 |
15
|
simprld |
|- ( ph -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) ) |
77 |
76
|
simpld |
|- ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) |
78 |
77
|
r19.21bi |
|- ( ( ph /\ x e. A ) -> A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) |
79 |
78
|
r19.21bi |
|- ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) |
80 |
79
|
imp |
|- ( ( ( ( ph /\ x e. A ) /\ y e. A ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) |
81 |
67 71 74 75 80
|
syl1111anc |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) |
82 |
69
|
fvresd |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( ( F |` ran G ) ` x ) = ( F ` x ) ) |
83 |
82
|
adantr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( ( F |` ran G ) ` x ) = ( F ` x ) ) |
84 |
72
|
fvresd |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( ( F |` ran G ) ` y ) = ( F ` y ) ) |
85 |
84
|
adantr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( ( F |` ran G ) ` y ) = ( F ` y ) ) |
86 |
81 83 85
|
3brtr4d |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) |
87 |
82 84
|
breq12d |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) <-> ( F ` x ) .c_ ( F ` y ) ) ) |
88 |
87
|
biimpa |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) |
89 |
7
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> W e. Poset ) |
90 |
6
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> V e. Poset ) |
91 |
1 11 13 8
|
mgcmnt2d |
|- ( ph -> G e. ( W Monot V ) ) |
92 |
91
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G e. ( W Monot V ) ) |
93 |
16
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F : A --> B ) |
94 |
18
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G : B --> A ) |
95 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> u e. B ) |
96 |
94 95
|
ffvelrnd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) e. A ) |
97 |
93 96
|
ffvelrnd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) e. B ) |
98 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> v e. B ) |
99 |
94 98
|
ffvelrnd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) e. A ) |
100 |
93 99
|
ffvelrnd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) e. B ) |
101 |
|
simpr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) |
102 |
101
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` x ) .c_ ( F ` y ) ) |
103 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) = x ) |
104 |
103
|
fveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) = ( F ` x ) ) |
105 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) = y ) |
106 |
105
|
fveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) = ( F ` y ) ) |
107 |
102 104 106
|
3brtr4d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) .c_ ( F ` ( G ` v ) ) ) |
108 |
3 2 5 4 89 90 92 97 100 107
|
ismntd |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) .<_ ( G ` ( F ` ( G ` v ) ) ) ) |
109 |
8
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F H G ) |
110 |
1 2 3 4 5 90 89 109 95
|
mgcf1olem2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) = ( G ` u ) ) |
111 |
1 2 3 4 5 90 89 109 98
|
mgcf1olem2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` v ) ) ) = ( G ` v ) ) |
112 |
108 110 111
|
3brtr3d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) .<_ ( G ` v ) ) |
113 |
112 103 105
|
3brtr3d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> x .<_ y ) |
114 |
23
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> G Fn B ) |
115 |
114
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> G Fn B ) |
116 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> y e. ran G ) |
117 |
|
fvelrnb |
|- ( G Fn B -> ( y e. ran G <-> E. v e. B ( G ` v ) = y ) ) |
118 |
117
|
biimpa |
|- ( ( G Fn B /\ y e. ran G ) -> E. v e. B ( G ` v ) = y ) |
119 |
115 116 118
|
syl2anc |
|- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> E. v e. B ( G ` v ) = y ) |
120 |
113 119
|
r19.29a |
|- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> x .<_ y ) |
121 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x e. ran G ) |
122 |
|
fvelrnb |
|- ( G Fn B -> ( x e. ran G <-> E. u e. B ( G ` u ) = x ) ) |
123 |
122
|
biimpa |
|- ( ( G Fn B /\ x e. ran G ) -> E. u e. B ( G ` u ) = x ) |
124 |
114 121 123
|
syl2anc |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> E. u e. B ( G ` u ) = x ) |
125 |
120 124
|
r19.29a |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x .<_ y ) |
126 |
88 125
|
syldan |
|- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> x .<_ y ) |
127 |
86 126
|
impbida |
|- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) |
128 |
127
|
anasss |
|- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) |
129 |
128
|
ralrimivva |
|- ( ph -> A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) |
130 |
|
df-isom |
|- ( ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) <-> ( ( F |` ran G ) : ran G -1-1-onto-> ran F /\ A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) ) |
131 |
66 129 130
|
sylanbrc |
|- ( ph -> ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) ) |