Metamath Proof Explorer


Theorem mgcf1o

Description: Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024)

Ref Expression
Hypotheses mgcf1o.h No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcf1o.a A = Base V
mgcf1o.b B = Base W
mgcf1o.1 ˙ = V
mgcf1o.2 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcf1o.v φ V Poset
mgcf1o.w φ W Poset
mgcf1o.f φ F H G
Assertion mgcf1o Could not format assertion : No typesetting found for |- ( ph -> ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgcf1o.h Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgcf1o.a A = Base V
3 mgcf1o.b B = Base W
4 mgcf1o.1 ˙ = V
5 mgcf1o.2 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
6 mgcf1o.v φ V Poset
7 mgcf1o.w φ W Poset
8 mgcf1o.f φ F H G
9 eqid x ran G F x = x ran G F x
10 posprs V Poset V Proset
11 6 10 syl φ V Proset
12 posprs W Poset W Proset
13 7 12 syl φ W Proset
14 2 3 4 5 1 11 13 dfmgc2 Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) with typecode |-
15 8 14 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) with typecode |-
16 15 simplld φ F : A B
17 16 ffnd φ F Fn A
18 15 simplrd φ G : B A
19 18 frnd φ ran G A
20 19 sselda φ x ran G x A
21 fnfvelrn F Fn A x A F x ran F
22 17 20 21 syl2an2r φ x ran G F x ran F
23 18 ffnd φ G Fn B
24 16 frnd φ ran F B
25 24 sselda φ u ran F u B
26 fnfvelrn G Fn B u B G u ran G
27 23 25 26 syl2an2r φ u ran F G u ran G
28 6 ad4antr φ x ran G u ran F x = G u y A F y = u V Poset
29 7 ad4antr φ x ran G u ran F x = G u y A F y = u W Poset
30 8 ad4antr φ x ran G u ran F x = G u y A F y = u F H G
31 simplr φ x ran G u ran F x = G u y A F y = u y A
32 1 2 3 4 5 28 29 30 31 mgcf1olem1 φ x ran G u ran F x = G u y A F y = u F G F y = F y
33 simpr φ x ran G u ran F x = G u y A F y = u F y = u
34 33 fveq2d φ x ran G u ran F x = G u y A F y = u G F y = G u
35 simpllr φ x ran G u ran F x = G u y A F y = u x = G u
36 34 35 eqtr4d φ x ran G u ran F x = G u y A F y = u G F y = x
37 36 fveq2d φ x ran G u ran F x = G u y A F y = u F G F y = F x
38 32 37 33 3eqtr3rd φ x ran G u ran F x = G u y A F y = u u = F x
39 17 ad2antrr φ x ran G u ran F x = G u F Fn A
40 simplrr φ x ran G u ran F x = G u u ran F
41 fvelrnb F Fn A u ran F y A F y = u
42 41 biimpa F Fn A u ran F y A F y = u
43 39 40 42 syl2anc φ x ran G u ran F x = G u y A F y = u
44 38 43 r19.29a φ x ran G u ran F x = G u u = F x
45 6 ad4antr φ x ran G u ran F u = F x v B G v = x V Poset
46 7 ad4antr φ x ran G u ran F u = F x v B G v = x W Poset
47 8 ad4antr φ x ran G u ran F u = F x v B G v = x F H G
48 simplr φ x ran G u ran F u = F x v B G v = x v B
49 1 2 3 4 5 45 46 47 48 mgcf1olem2 φ x ran G u ran F u = F x v B G v = x G F G v = G v
50 simpr φ x ran G u ran F u = F x v B G v = x G v = x
51 50 fveq2d φ x ran G u ran F u = F x v B G v = x F G v = F x
52 simpllr φ x ran G u ran F u = F x v B G v = x u = F x
53 51 52 eqtr4d φ x ran G u ran F u = F x v B G v = x F G v = u
54 53 fveq2d φ x ran G u ran F u = F x v B G v = x G F G v = G u
55 49 54 50 3eqtr3rd φ x ran G u ran F u = F x v B G v = x x = G u
56 23 ad2antrr φ x ran G u ran F u = F x G Fn B
57 simplrl φ x ran G u ran F u = F x x ran G
58 fvelrnb G Fn B x ran G v B G v = x
59 58 biimpa G Fn B x ran G v B G v = x
60 56 57 59 syl2anc φ x ran G u ran F u = F x v B G v = x
61 55 60 r19.29a φ x ran G u ran F u = F x x = G u
62 44 61 impbida φ x ran G u ran F x = G u u = F x
63 9 22 27 62 f1o2d φ x ran G F x : ran G 1-1 onto ran F
64 16 19 feqresmpt φ F ran G = x ran G F x
65 64 f1oeq1d φ F ran G : ran G 1-1 onto ran F x ran G F x : ran G 1-1 onto ran F
66 63 65 mpbird φ F ran G : ran G 1-1 onto ran F
67 simplll φ x ran G y ran G x ˙ y φ
68 19 ad2antrr φ x ran G y ran G ran G A
69 simplr φ x ran G y ran G x ran G
70 68 69 sseldd φ x ran G y ran G x A
71 70 adantr φ x ran G y ran G x ˙ y x A
72 simpr φ x ran G y ran G y ran G
73 68 72 sseldd φ x ran G y ran G y A
74 73 adantr φ x ran G y ran G x ˙ y y A
75 simpr φ x ran G y ran G x ˙ y x ˙ y
76 15 simprld Could not format ( ph -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) ) : No typesetting found for |- ( ph -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) ) with typecode |-
77 76 simpld Could not format ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
78 77 r19.21bi Could not format ( ( ph /\ x e. A ) -> A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ( ph /\ x e. A ) -> A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
79 78 r19.21bi Could not format ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
80 79 imp Could not format ( ( ( ( ph /\ x e. A ) /\ y e. A ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) : No typesetting found for |- ( ( ( ( ph /\ x e. A ) /\ y e. A ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) with typecode |-
81 67 71 74 75 80 syl1111anc Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( F ` x ) .c_ ( F ` y ) ) with typecode |-
82 69 fvresd φ x ran G y ran G F ran G x = F x
83 82 adantr φ x ran G y ran G x ˙ y F ran G x = F x
84 72 fvresd φ x ran G y ran G F ran G y = F y
85 84 adantr φ x ran G y ran G x ˙ y F ran G y = F y
86 81 83 85 3brtr4d Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ x .<_ y ) -> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) with typecode |-
87 82 84 breq12d Could not format ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) <-> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) <-> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
88 87 biimpa Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) with typecode |-
89 7 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> W e. Poset ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> W e. Poset ) with typecode |-
90 6 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> V e. Poset ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> V e. Poset ) with typecode |-
91 1 11 13 8 mgcmnt2d Could not format ( ph -> G e. ( W Monot V ) ) : No typesetting found for |- ( ph -> G e. ( W Monot V ) ) with typecode |-
92 91 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G e. ( W Monot V ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G e. ( W Monot V ) ) with typecode |-
93 16 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F : A --> B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F : A --> B ) with typecode |-
94 18 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G : B --> A ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> G : B --> A ) with typecode |-
95 simp-4r Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> u e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> u e. B ) with typecode |-
96 94 95 ffvelrnd Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) e. A ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) e. A ) with typecode |-
97 93 96 ffvelrnd Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) e. B ) with typecode |-
98 simplr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> v e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> v e. B ) with typecode |-
99 94 98 ffvelrnd Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) e. A ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) e. A ) with typecode |-
100 93 99 ffvelrnd Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) e. B ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) e. B ) with typecode |-
101 simpr Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> ( F ` x ) .c_ ( F ` y ) ) with typecode |-
102 101 ad4antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` x ) .c_ ( F ` y ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` x ) .c_ ( F ` y ) ) with typecode |-
103 simpllr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) = x ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) = x ) with typecode |-
104 103 fveq2d Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) = ( F ` x ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) = ( F ` x ) ) with typecode |-
105 simpr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) = y ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` v ) = y ) with typecode |-
106 105 fveq2d Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) = ( F ` y ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` v ) ) = ( F ` y ) ) with typecode |-
107 102 104 106 3brtr4d Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) .c_ ( F ` ( G ` v ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( F ` ( G ` u ) ) .c_ ( F ` ( G ` v ) ) ) with typecode |-
108 3 2 5 4 89 90 92 97 100 107 ismntd Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) .<_ ( G ` ( F ` ( G ` v ) ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) .<_ ( G ` ( F ` ( G ` v ) ) ) ) with typecode |-
109 8 ad7antr Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F H G ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> F H G ) with typecode |-
110 1 2 3 4 5 90 89 109 95 mgcf1olem2 Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) = ( G ` u ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` u ) ) ) = ( G ` u ) ) with typecode |-
111 1 2 3 4 5 90 89 109 98 mgcf1olem2 Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` v ) ) ) = ( G ` v ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` ( F ` ( G ` v ) ) ) = ( G ` v ) ) with typecode |-
112 108 110 111 3brtr3d Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) .<_ ( G ` v ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> ( G ` u ) .<_ ( G ` v ) ) with typecode |-
113 112 103 105 3brtr3d Could not format ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> x .<_ y ) : No typesetting found for |- ( ( ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) /\ v e. B ) /\ ( G ` v ) = y ) -> x .<_ y ) with typecode |-
114 23 ad3antrrr Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> G Fn B ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> G Fn B ) with typecode |-
115 114 ad2antrr Could not format ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> G Fn B ) : No typesetting found for |- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> G Fn B ) with typecode |-
116 simp-4r Could not format ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> y e. ran G ) : No typesetting found for |- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> y e. ran G ) with typecode |-
117 fvelrnb G Fn B y ran G v B G v = y
118 117 biimpa G Fn B y ran G v B G v = y
119 115 116 118 syl2anc Could not format ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> E. v e. B ( G ` v ) = y ) : No typesetting found for |- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> E. v e. B ( G ` v ) = y ) with typecode |-
120 113 119 r19.29a Could not format ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> x .<_ y ) : No typesetting found for |- ( ( ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) /\ u e. B ) /\ ( G ` u ) = x ) -> x .<_ y ) with typecode |-
121 simpllr Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x e. ran G ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x e. ran G ) with typecode |-
122 fvelrnb G Fn B x ran G u B G u = x
123 122 biimpa G Fn B x ran G u B G u = x
124 114 121 123 syl2anc Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> E. u e. B ( G ` u ) = x ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> E. u e. B ( G ` u ) = x ) with typecode |-
125 120 124 r19.29a Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x .<_ y ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( F ` x ) .c_ ( F ` y ) ) -> x .<_ y ) with typecode |-
126 88 125 syldan Could not format ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> x .<_ y ) : No typesetting found for |- ( ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) /\ ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) -> x .<_ y ) with typecode |-
127 86 126 impbida Could not format ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) : No typesetting found for |- ( ( ( ph /\ x e. ran G ) /\ y e. ran G ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) with typecode |-
128 127 anasss Could not format ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) : No typesetting found for |- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) with typecode |-
129 128 ralrimivva Could not format ( ph -> A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) with typecode |-
130 df-isom Could not format ( ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) <-> ( ( F |` ran G ) : ran G -1-1-onto-> ran F /\ A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) ) : No typesetting found for |- ( ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) <-> ( ( F |` ran G ) : ran G -1-1-onto-> ran F /\ A. x e. ran G A. y e. ran G ( x .<_ y <-> ( ( F |` ran G ) ` x ) .c_ ( ( F |` ran G ) ` y ) ) ) ) with typecode |-
131 66 129 130 sylanbrc Could not format ( ph -> ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) ) : No typesetting found for |- ( ph -> ( F |` ran G ) Isom .<_ , .c_ ( ran G , ran F ) ) with typecode |-