Metamath Proof Explorer


Theorem mgcf1olem2

Description: Property of a Galois connection, lemma for mgcf1o . (Contributed by Thierry Arnoux, 26-Jul-2024)

Ref Expression
Hypotheses mgcf1o.h No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcf1o.a A = Base V
mgcf1o.b B = Base W
mgcf1o.1 ˙ = V
mgcf1o.2 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcf1o.v φ V Poset
mgcf1o.w φ W Poset
mgcf1o.f φ F H G
mgcf1olem2.1 φ Y B
Assertion mgcf1olem2 φ G F G Y = G Y

Proof

Step Hyp Ref Expression
1 mgcf1o.h Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgcf1o.a A = Base V
3 mgcf1o.b B = Base W
4 mgcf1o.1 ˙ = V
5 mgcf1o.2 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
6 mgcf1o.v φ V Poset
7 mgcf1o.w φ W Poset
8 mgcf1o.f φ F H G
9 mgcf1olem2.1 φ Y B
10 posprs V Poset V Proset
11 6 10 syl φ V Proset
12 posprs W Poset W Proset
13 7 12 syl φ W Proset
14 2 3 4 5 1 11 13 dfmgc2 Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) with typecode |-
15 8 14 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) with typecode |-
16 15 simplrd φ G : B A
17 15 simplld φ F : A B
18 16 9 ffvelrnd φ G Y A
19 17 18 ffvelrnd φ F G Y B
20 16 19 ffvelrnd φ G F G Y A
21 2 3 4 5 1 11 13 8 9 mgccole2 Could not format ( ph -> ( F ` ( G ` Y ) ) .c_ Y ) : No typesetting found for |- ( ph -> ( F ` ( G ` Y ) ) .c_ Y ) with typecode |-
22 2 3 4 5 1 11 13 8 19 9 21 mgcmnt2 φ G F G Y ˙ G Y
23 2 3 4 5 1 11 13 8 18 mgccole1 φ G Y ˙ G F G Y
24 2 4 posasymb V Poset G F G Y A G Y A G F G Y ˙ G Y G Y ˙ G F G Y G F G Y = G Y
25 24 biimpa V Poset G F G Y A G Y A G F G Y ˙ G Y G Y ˙ G F G Y G F G Y = G Y
26 6 20 18 22 23 25 syl32anc φ G F G Y = G Y