Metamath Proof Explorer


Theorem mgcf1olem2

Description: Property of a Galois connection, lemma for mgcf1o . (Contributed by Thierry Arnoux, 26-Jul-2024)

Ref Expression
Hypotheses mgcf1o.h 𝐻 = ( 𝑉 MGalConn 𝑊 )
mgcf1o.a 𝐴 = ( Base ‘ 𝑉 )
mgcf1o.b 𝐵 = ( Base ‘ 𝑊 )
mgcf1o.1 = ( le ‘ 𝑉 )
mgcf1o.2 = ( le ‘ 𝑊 )
mgcf1o.v ( 𝜑𝑉 ∈ Poset )
mgcf1o.w ( 𝜑𝑊 ∈ Poset )
mgcf1o.f ( 𝜑𝐹 𝐻 𝐺 )
mgcf1olem2.1 ( 𝜑𝑌𝐵 )
Assertion mgcf1olem2 ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) = ( 𝐺𝑌 ) )

Proof

Step Hyp Ref Expression
1 mgcf1o.h 𝐻 = ( 𝑉 MGalConn 𝑊 )
2 mgcf1o.a 𝐴 = ( Base ‘ 𝑉 )
3 mgcf1o.b 𝐵 = ( Base ‘ 𝑊 )
4 mgcf1o.1 = ( le ‘ 𝑉 )
5 mgcf1o.2 = ( le ‘ 𝑊 )
6 mgcf1o.v ( 𝜑𝑉 ∈ Poset )
7 mgcf1o.w ( 𝜑𝑊 ∈ Poset )
8 mgcf1o.f ( 𝜑𝐹 𝐻 𝐺 )
9 mgcf1olem2.1 ( 𝜑𝑌𝐵 )
10 posprs ( 𝑉 ∈ Poset → 𝑉 ∈ Proset )
11 6 10 syl ( 𝜑𝑉 ∈ Proset )
12 posprs ( 𝑊 ∈ Poset → 𝑊 ∈ Proset )
13 7 12 syl ( 𝜑𝑊 ∈ Proset )
14 2 3 4 5 1 11 13 dfmgc2 ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) ) )
15 8 14 mpbid ( 𝜑 → ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) )
16 15 simplrd ( 𝜑𝐺 : 𝐵𝐴 )
17 15 simplld ( 𝜑𝐹 : 𝐴𝐵 )
18 16 9 ffvelrnd ( 𝜑 → ( 𝐺𝑌 ) ∈ 𝐴 )
19 17 18 ffvelrnd ( 𝜑 → ( 𝐹 ‘ ( 𝐺𝑌 ) ) ∈ 𝐵 )
20 16 19 ffvelrnd ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ∈ 𝐴 )
21 2 3 4 5 1 11 13 8 9 mgccole2 ( 𝜑 → ( 𝐹 ‘ ( 𝐺𝑌 ) ) 𝑌 )
22 2 3 4 5 1 11 13 8 19 9 21 mgcmnt2 ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ( 𝐺𝑌 ) )
23 2 3 4 5 1 11 13 8 18 mgccole1 ( 𝜑 → ( 𝐺𝑌 ) ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) )
24 2 4 posasymb ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺𝑌 ) ∈ 𝐴 ) → ( ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ( 𝐺𝑌 ) ∧ ( 𝐺𝑌 ) ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) = ( 𝐺𝑌 ) ) )
25 24 biimpa ( ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺𝑌 ) ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ( 𝐺𝑌 ) ∧ ( 𝐺𝑌 ) ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) = ( 𝐺𝑌 ) )
26 6 20 18 22 23 25 syl32anc ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺𝑌 ) ) ) = ( 𝐺𝑌 ) )