| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgcf1o.h |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
| 2 |
|
mgcf1o.a |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
| 3 |
|
mgcf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 4 |
|
mgcf1o.1 |
⊢ ≤ = ( le ‘ 𝑉 ) |
| 5 |
|
mgcf1o.2 |
⊢ ≲ = ( le ‘ 𝑊 ) |
| 6 |
|
mgcf1o.v |
⊢ ( 𝜑 → 𝑉 ∈ Poset ) |
| 7 |
|
mgcf1o.w |
⊢ ( 𝜑 → 𝑊 ∈ Poset ) |
| 8 |
|
mgcf1o.f |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |
| 9 |
|
mgcf1olem2.1 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
posprs |
⊢ ( 𝑉 ∈ Poset → 𝑉 ∈ Proset ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
| 12 |
|
posprs |
⊢ ( 𝑊 ∈ Poset → 𝑊 ∈ Proset ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
| 14 |
2 3 4 5 1 11 13
|
dfmgc2 |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) ) |
| 15 |
8 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 16 |
15
|
simplrd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 17 |
15
|
simplld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 18 |
16 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) |
| 19 |
17 18
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 20 |
16 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ) |
| 21 |
2 3 4 5 1 11 13 8 9
|
mgccole2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ) |
| 22 |
2 3 4 5 1 11 13 8 19 9 21
|
mgcmnt2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ) |
| 23 |
2 3 4 5 1 11 13 8 18
|
mgccole1 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 24 |
2 4
|
posasymb |
⊢ ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) → ( ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ∧ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ∧ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |
| 26 |
6 20 18 22 23 25
|
syl32anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |