Step |
Hyp |
Ref |
Expression |
1 |
|
mgcf1o.h |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
2 |
|
mgcf1o.a |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
3 |
|
mgcf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
4 |
|
mgcf1o.1 |
⊢ ≤ = ( le ‘ 𝑉 ) |
5 |
|
mgcf1o.2 |
⊢ ≲ = ( le ‘ 𝑊 ) |
6 |
|
mgcf1o.v |
⊢ ( 𝜑 → 𝑉 ∈ Poset ) |
7 |
|
mgcf1o.w |
⊢ ( 𝜑 → 𝑊 ∈ Poset ) |
8 |
|
mgcf1o.f |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |
9 |
|
mgcf1olem2.1 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
posprs |
⊢ ( 𝑉 ∈ Poset → 𝑉 ∈ Proset ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
12 |
|
posprs |
⊢ ( 𝑊 ∈ Poset → 𝑊 ∈ Proset ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
14 |
2 3 4 5 1 11 13
|
dfmgc2 |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
16 |
15
|
simplrd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
17 |
15
|
simplld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
18 |
16 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) |
19 |
17 18
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝐵 ) |
20 |
16 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ) |
21 |
2 3 4 5 1 11 13 8 9
|
mgccole2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ) |
22 |
2 3 4 5 1 11 13 8 19 9 21
|
mgcmnt2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ) |
23 |
2 3 4 5 1 11 13 8 18
|
mgccole1 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
24 |
2 4
|
posasymb |
⊢ ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) → ( ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ∧ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) ) |
25 |
24
|
biimpa |
⊢ ( ( ( 𝑉 ∈ Poset ∧ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) ∧ ( ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ≤ ( 𝐺 ‘ 𝑌 ) ∧ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |
26 |
6 20 18 22 23 25
|
syl32anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝐺 ‘ 𝑌 ) ) |