Step |
Hyp |
Ref |
Expression |
1 |
|
mgcoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mgcoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mgcoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mgcoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
|
mgcval.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
6 |
|
mgcval.2 |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
7 |
|
mgcval.3 |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
8 |
|
mgccole.1 |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |
9 |
|
mgccole2.1 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
1 2 3 4 5 6 7
|
mgcval |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
11 |
8 10
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
12 |
11
|
simplrd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
13 |
12 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) |
14 |
1 3
|
prsref |
⊢ ( ( 𝑉 ∈ Proset ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) |
15 |
6 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) |
16 |
11
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑌 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ) ) |
19 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑌 ) → ( 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
20 |
18 19
|
bibi12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝐺 ‘ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
22 |
21
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝐺 ‘ 𝑌 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
23 |
13 22
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
24 |
16 23
|
mpd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
26 |
25
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑌 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑌 ) ) |
29 |
28
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → ( ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) ) |
30 |
26 29
|
bibi12d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) ) ) |
31 |
9 30
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) ) ) |
32 |
24 31
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ↔ ( 𝐺 ‘ 𝑌 ) ≤ ( 𝐺 ‘ 𝑌 ) ) ) |
33 |
15 32
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ≲ 𝑌 ) |