Metamath Proof Explorer


Theorem mgccole1

Description: An inequality for the kernel operator G o. F . (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
mgcoval.3 = ( le ‘ 𝑉 )
mgcoval.4 = ( le ‘ 𝑊 )
mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
mgcval.2 ( 𝜑𝑉 ∈ Proset )
mgcval.3 ( 𝜑𝑊 ∈ Proset )
mgccole.1 ( 𝜑𝐹 𝐻 𝐺 )
mgccole1.2 ( 𝜑𝑋𝐴 )
Assertion mgccole1 ( 𝜑𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
2 mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
3 mgcoval.3 = ( le ‘ 𝑉 )
4 mgcoval.4 = ( le ‘ 𝑊 )
5 mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
6 mgcval.2 ( 𝜑𝑉 ∈ Proset )
7 mgcval.3 ( 𝜑𝑊 ∈ Proset )
8 mgccole.1 ( 𝜑𝐹 𝐻 𝐺 )
9 mgccole1.2 ( 𝜑𝑋𝐴 )
10 1 2 3 4 5 6 7 mgcval ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ) ) )
11 8 10 mpbid ( 𝜑 → ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ) )
12 11 simplld ( 𝜑𝐹 : 𝐴𝐵 )
13 12 9 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐵 )
14 2 4 prsref ( ( 𝑊 ∈ Proset ∧ ( 𝐹𝑋 ) ∈ 𝐵 ) → ( 𝐹𝑋 ) ( 𝐹𝑋 ) )
15 7 13 14 syl2anc ( 𝜑 → ( 𝐹𝑋 ) ( 𝐹𝑋 ) )
16 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
17 16 breq1d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) 𝑦 ↔ ( 𝐹𝑋 ) 𝑦 ) )
18 breq1 ( 𝑥 = 𝑋 → ( 𝑥 ( 𝐺𝑦 ) ↔ 𝑋 ( 𝐺𝑦 ) ) )
19 17 18 bibi12d ( 𝑥 = 𝑋 → ( ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ↔ ( ( 𝐹𝑋 ) 𝑦𝑋 ( 𝐺𝑦 ) ) ) )
20 19 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ↔ ∀ 𝑦𝐵 ( ( 𝐹𝑋 ) 𝑦𝑋 ( 𝐺𝑦 ) ) ) )
21 11 simprd ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) )
22 20 21 9 rspcdva ( 𝜑 → ∀ 𝑦𝐵 ( ( 𝐹𝑋 ) 𝑦𝑋 ( 𝐺𝑦 ) ) )
23 simpr ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → 𝑦 = ( 𝐹𝑋 ) )
24 23 breq2d ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ( ( 𝐹𝑋 ) 𝑦 ↔ ( 𝐹𝑋 ) ( 𝐹𝑋 ) ) )
25 23 fveq2d ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ( 𝐺𝑦 ) = ( 𝐺 ‘ ( 𝐹𝑋 ) ) )
26 25 breq2d ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ( 𝑋 ( 𝐺𝑦 ) ↔ 𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) ) )
27 24 26 bibi12d ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ( ( ( 𝐹𝑋 ) 𝑦𝑋 ( 𝐺𝑦 ) ) ↔ ( ( 𝐹𝑋 ) ( 𝐹𝑋 ) ↔ 𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) ) ) )
28 13 27 rspcdv ( 𝜑 → ( ∀ 𝑦𝐵 ( ( 𝐹𝑋 ) 𝑦𝑋 ( 𝐺𝑦 ) ) → ( ( 𝐹𝑋 ) ( 𝐹𝑋 ) ↔ 𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) ) ) )
29 22 28 mpd ( 𝜑 → ( ( 𝐹𝑋 ) ( 𝐹𝑋 ) ↔ 𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) ) )
30 15 29 mpbid ( 𝜑𝑋 ( 𝐺 ‘ ( 𝐹𝑋 ) ) )