Metamath Proof Explorer


Theorem mgccole1

Description: An inequality for the kernel operator G o. F . (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 A=BaseV
mgcoval.2 B=BaseW
mgcoval.3 ˙=V
mgcoval.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcval.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcval.2 φVProset
mgcval.3 φWProset
mgccole.1 φFHG
mgccole1.2 φXA
Assertion mgccole1 φX˙GFX

Proof

Step Hyp Ref Expression
1 mgcoval.1 A=BaseV
2 mgcoval.2 B=BaseW
3 mgcoval.3 ˙=V
4 mgcoval.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 mgcval.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
6 mgcval.2 φVProset
7 mgcval.3 φWProset
8 mgccole.1 φFHG
9 mgccole1.2 φXA
10 1 2 3 4 5 6 7 mgcval Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) with typecode |-
11 8 10 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) with typecode |-
12 11 simplld φF:AB
13 12 9 ffvelcdmd φFXB
14 2 4 prsref Could not format ( ( W e. Proset /\ ( F ` X ) e. B ) -> ( F ` X ) .c_ ( F ` X ) ) : No typesetting found for |- ( ( W e. Proset /\ ( F ` X ) e. B ) -> ( F ` X ) .c_ ( F ` X ) ) with typecode |-
15 7 13 14 syl2anc Could not format ( ph -> ( F ` X ) .c_ ( F ` X ) ) : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` X ) ) with typecode |-
16 fveq2 x=XFx=FX
17 16 breq1d Could not format ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) : No typesetting found for |- ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) with typecode |-
18 breq1 x=Xx˙GyX˙Gy
19 17 18 bibi12d Could not format ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
20 19 ralbidv Could not format ( x = X -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
21 11 simprd Could not format ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) with typecode |-
22 20 21 9 rspcdva Could not format ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) with typecode |-
23 simpr φy=FXy=FX
24 23 breq2d Could not format ( ( ph /\ y = ( F ` X ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` X ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` X ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` X ) ) ) with typecode |-
25 23 fveq2d φy=FXGy=GFX
26 25 breq2d φy=FXX˙GyX˙GFX
27 24 26 bibi12d Could not format ( ( ph /\ y = ( F ` X ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` X ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) with typecode |-
28 13 27 rspcdv Could not format ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) : No typesetting found for |- ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) with typecode |-
29 22 28 mpd Could not format ( ph -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) : No typesetting found for |- ( ph -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) with typecode |-
30 15 29 mpbid φX˙GFX