Metamath Proof Explorer


Theorem mgccole1

Description: An inequality for the kernel operator G o. F . (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 A = Base V
mgcoval.2 B = Base W
mgcoval.3 ˙ = V
mgcoval.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcval.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcval.2 φ V Proset
mgcval.3 φ W Proset
mgccole.1 φ F H G
mgccole1.2 φ X A
Assertion mgccole1 φ X ˙ G F X

Proof

Step Hyp Ref Expression
1 mgcoval.1 A = Base V
2 mgcoval.2 B = Base W
3 mgcoval.3 ˙ = V
4 mgcoval.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 mgcval.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
6 mgcval.2 φ V Proset
7 mgcval.3 φ W Proset
8 mgccole.1 φ F H G
9 mgccole1.2 φ X A
10 1 2 3 4 5 6 7 mgcval Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) with typecode |-
11 8 10 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) with typecode |-
12 11 simplld φ F : A B
13 12 9 ffvelrnd φ F X B
14 2 4 prsref Could not format ( ( W e. Proset /\ ( F ` X ) e. B ) -> ( F ` X ) .c_ ( F ` X ) ) : No typesetting found for |- ( ( W e. Proset /\ ( F ` X ) e. B ) -> ( F ` X ) .c_ ( F ` X ) ) with typecode |-
15 7 13 14 syl2anc Could not format ( ph -> ( F ` X ) .c_ ( F ` X ) ) : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` X ) ) with typecode |-
16 fveq2 x = X F x = F X
17 16 breq1d Could not format ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) : No typesetting found for |- ( x = X -> ( ( F ` x ) .c_ y <-> ( F ` X ) .c_ y ) ) with typecode |-
18 breq1 x = X x ˙ G y X ˙ G y
19 17 18 bibi12d Could not format ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
20 19 ralbidv Could not format ( x = X -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) ) with typecode |-
21 11 simprd Could not format ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) with typecode |-
22 20 21 9 rspcdva Could not format ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) ) with typecode |-
23 simpr φ y = F X y = F X
24 23 breq2d Could not format ( ( ph /\ y = ( F ` X ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` X ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` X ) ) -> ( ( F ` X ) .c_ y <-> ( F ` X ) .c_ ( F ` X ) ) ) with typecode |-
25 23 fveq2d φ y = F X G y = G F X
26 25 breq2d φ y = F X X ˙ G y X ˙ G F X
27 24 26 bibi12d Could not format ( ( ph /\ y = ( F ` X ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) : No typesetting found for |- ( ( ph /\ y = ( F ` X ) ) -> ( ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) <-> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) with typecode |-
28 13 27 rspcdv Could not format ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) : No typesetting found for |- ( ph -> ( A. y e. B ( ( F ` X ) .c_ y <-> X .<_ ( G ` y ) ) -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) ) with typecode |-
29 22 28 mpd Could not format ( ph -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) : No typesetting found for |- ( ph -> ( ( F ` X ) .c_ ( F ` X ) <-> X .<_ ( G ` ( F ` X ) ) ) ) with typecode |-
30 15 29 mpbid φ X ˙ G F X