Metamath Proof Explorer


Theorem dfmgc2

Description: Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
mgcoval.3 = ( le ‘ 𝑉 )
mgcoval.4 = ( le ‘ 𝑊 )
mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
mgcval.2 ( 𝜑𝑉 ∈ Proset )
mgcval.3 ( 𝜑𝑊 ∈ Proset )
Assertion dfmgc2 ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
2 mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
3 mgcoval.3 = ( le ‘ 𝑉 )
4 mgcoval.4 = ( le ‘ 𝑊 )
5 mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
6 mgcval.2 ( 𝜑𝑉 ∈ Proset )
7 mgcval.3 ( 𝜑𝑊 ∈ Proset )
8 1 2 3 4 5 6 7 mgcval ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ) ) )
9 8 simprbda ( ( 𝜑𝐹 𝐻 𝐺 ) → ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) )
10 6 ad4antr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝑉 ∈ Proset )
11 7 ad4antr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝑊 ∈ Proset )
12 simp-4r ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝐹 𝐻 𝐺 )
13 simpllr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝑥𝐴 )
14 simplr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝑦𝐴 )
15 simpr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → 𝑥 𝑦 )
16 1 2 3 4 5 10 11 12 13 14 15 mgcmnt1 ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) ∧ 𝑥 𝑦 ) → ( 𝐹𝑥 ) ( 𝐹𝑦 ) )
17 16 ex ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
18 17 anasss ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
19 18 ralrimivva ( ( 𝜑𝐹 𝐻 𝐺 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
20 6 ad4antr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝑉 ∈ Proset )
21 7 ad4antr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝑊 ∈ Proset )
22 simp-4r ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝐹 𝐻 𝐺 )
23 simpllr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝑢𝐵 )
24 simplr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝑣𝐵 )
25 simpr ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → 𝑢 𝑣 )
26 1 2 3 4 5 20 21 22 23 24 25 mgcmnt2 ( ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) ∧ 𝑢 𝑣 ) → ( 𝐺𝑢 ) ( 𝐺𝑣 ) )
27 26 ex ( ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) ∧ 𝑣𝐵 ) → ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
28 27 anasss ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ ( 𝑢𝐵𝑣𝐵 ) ) → ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
29 28 ralrimivva ( ( 𝜑𝐹 𝐻 𝐺 ) → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
30 19 29 jca ( ( 𝜑𝐹 𝐻 𝐺 ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) )
31 6 ad2antrr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) → 𝑉 ∈ Proset )
32 7 ad2antrr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) → 𝑊 ∈ Proset )
33 simplr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) → 𝐹 𝐻 𝐺 )
34 simpr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) → 𝑢𝐵 )
35 1 2 3 4 5 31 32 33 34 mgccole2 ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑢𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
36 35 ralrimiva ( ( 𝜑𝐹 𝐻 𝐺 ) → ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
37 6 ad2antrr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) → 𝑉 ∈ Proset )
38 7 ad2antrr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) → 𝑊 ∈ Proset )
39 simplr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) → 𝐹 𝐻 𝐺 )
40 simpr ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
41 1 2 3 4 5 37 38 39 40 mgccole1 ( ( ( 𝜑𝐹 𝐻 𝐺 ) ∧ 𝑥𝐴 ) → 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
42 41 ralrimiva ( ( 𝜑𝐹 𝐻 𝐺 ) → ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
43 36 42 jca ( ( 𝜑𝐹 𝐻 𝐺 ) → ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) )
44 30 43 jca ( ( 𝜑𝐹 𝐻 𝐺 ) → ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) )
45 9 44 jca ( ( 𝜑𝐹 𝐻 𝐺 ) → ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) )
46 6 ad4antr ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → 𝑉 ∈ Proset )
47 7 ad4antr ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → 𝑊 ∈ Proset )
48 simp-4r ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) )
49 48 simpld ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → 𝐹 : 𝐴𝐵 )
50 48 simprd ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → 𝐺 : 𝐵𝐴 )
51 simpllr ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) )
52 51 simpld ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
53 breq1 ( 𝑥 = 𝑚 → ( 𝑥 𝑦𝑚 𝑦 ) )
54 fveq2 ( 𝑥 = 𝑚 → ( 𝐹𝑥 ) = ( 𝐹𝑚 ) )
55 54 breq1d ( 𝑥 = 𝑚 → ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ↔ ( 𝐹𝑚 ) ( 𝐹𝑦 ) ) )
56 53 55 imbi12d ( 𝑥 = 𝑚 → ( ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ↔ ( 𝑚 𝑦 → ( 𝐹𝑚 ) ( 𝐹𝑦 ) ) ) )
57 breq2 ( 𝑦 = 𝑛 → ( 𝑚 𝑦𝑚 𝑛 ) )
58 fveq2 ( 𝑦 = 𝑛 → ( 𝐹𝑦 ) = ( 𝐹𝑛 ) )
59 58 breq2d ( 𝑦 = 𝑛 → ( ( 𝐹𝑚 ) ( 𝐹𝑦 ) ↔ ( 𝐹𝑚 ) ( 𝐹𝑛 ) ) )
60 57 59 imbi12d ( 𝑦 = 𝑛 → ( ( 𝑚 𝑦 → ( 𝐹𝑚 ) ( 𝐹𝑦 ) ) ↔ ( 𝑚 𝑛 → ( 𝐹𝑚 ) ( 𝐹𝑛 ) ) ) )
61 56 60 cbvral2vw ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ↔ ∀ 𝑚𝐴𝑛𝐴 ( 𝑚 𝑛 → ( 𝐹𝑚 ) ( 𝐹𝑛 ) ) )
62 52 61 sylib ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ∀ 𝑚𝐴𝑛𝐴 ( 𝑚 𝑛 → ( 𝐹𝑚 ) ( 𝐹𝑛 ) ) )
63 51 simprd ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
64 breq1 ( 𝑢 = 𝑖 → ( 𝑢 𝑣𝑖 𝑣 ) )
65 fveq2 ( 𝑢 = 𝑖 → ( 𝐺𝑢 ) = ( 𝐺𝑖 ) )
66 65 breq1d ( 𝑢 = 𝑖 → ( ( 𝐺𝑢 ) ( 𝐺𝑣 ) ↔ ( 𝐺𝑖 ) ( 𝐺𝑣 ) ) )
67 64 66 imbi12d ( 𝑢 = 𝑖 → ( ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ↔ ( 𝑖 𝑣 → ( 𝐺𝑖 ) ( 𝐺𝑣 ) ) ) )
68 breq2 ( 𝑣 = 𝑗 → ( 𝑖 𝑣𝑖 𝑗 ) )
69 fveq2 ( 𝑣 = 𝑗 → ( 𝐺𝑣 ) = ( 𝐺𝑗 ) )
70 69 breq2d ( 𝑣 = 𝑗 → ( ( 𝐺𝑖 ) ( 𝐺𝑣 ) ↔ ( 𝐺𝑖 ) ( 𝐺𝑗 ) ) )
71 68 70 imbi12d ( 𝑣 = 𝑗 → ( ( 𝑖 𝑣 → ( 𝐺𝑖 ) ( 𝐺𝑣 ) ) ↔ ( 𝑖 𝑗 → ( 𝐺𝑖 ) ( 𝐺𝑗 ) ) ) )
72 67 71 cbvral2vw ( ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ↔ ∀ 𝑖𝐵𝑗𝐵 ( 𝑖 𝑗 → ( 𝐺𝑖 ) ( 𝐺𝑗 ) ) )
73 63 72 sylib ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → ∀ 𝑖𝐵𝑗𝐵 ( 𝑖 𝑗 → ( 𝐺𝑖 ) ( 𝐺𝑗 ) ) )
74 id ( 𝑥 = 𝑚𝑥 = 𝑚 )
75 2fveq3 ( 𝑥 = 𝑚 → ( 𝐺 ‘ ( 𝐹𝑥 ) ) = ( 𝐺 ‘ ( 𝐹𝑚 ) ) )
76 74 75 breq12d ( 𝑥 = 𝑚 → ( 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ↔ 𝑚 ( 𝐺 ‘ ( 𝐹𝑚 ) ) ) )
77 simplr ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑚𝐴 ) → ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
78 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑚𝐴 ) → 𝑚𝐴 )
79 76 77 78 rspcdva ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑚𝐴 ) → 𝑚 ( 𝐺 ‘ ( 𝐹𝑚 ) ) )
80 2fveq3 ( 𝑢 = 𝑖 → ( 𝐹 ‘ ( 𝐺𝑢 ) ) = ( 𝐹 ‘ ( 𝐺𝑖 ) ) )
81 id ( 𝑢 = 𝑖𝑢 = 𝑖 )
82 80 81 breq12d ( 𝑢 = 𝑖 → ( ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ↔ ( 𝐹 ‘ ( 𝐺𝑖 ) ) 𝑖 ) )
83 simpllr ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑖𝐵 ) → ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
84 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑖𝐵 ) → 𝑖𝐵 )
85 82 83 84 rspcdva ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ∧ 𝑖𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑖 ) ) 𝑖 )
86 1 2 3 4 5 46 47 49 50 62 73 79 85 dfmgc2lem ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ) ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) → 𝐹 𝐻 𝐺 )
87 86 anasss ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) → 𝐹 𝐻 𝐺 )
88 87 anasss ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) → 𝐹 𝐻 𝐺 )
89 88 anasss ( ( 𝜑 ∧ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) ) → 𝐹 𝐻 𝐺 )
90 45 89 impbida ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ∧ ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ) ∧ ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ∧ ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ) ) ) ) )