Step |
Hyp |
Ref |
Expression |
1 |
|
mgcoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mgcoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mgcoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mgcoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
|
mgcval.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
6 |
|
mgcval.2 |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
7 |
|
mgcval.3 |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
8 |
1 2 3 4 5 6 7
|
mgcval |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) |
10 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑉 ∈ Proset ) |
11 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑊 ∈ Proset ) |
12 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝐹 𝐻 𝐺 ) |
13 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
14 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
15 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) |
16 |
1 2 3 4 5 10 11 12 13 14 15
|
mgcmnt1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) |
17 |
16
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
17
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
19 |
18
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝑉 ∈ Proset ) |
21 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝑊 ∈ Proset ) |
22 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝐹 𝐻 𝐺 ) |
23 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝑢 ∈ 𝐵 ) |
24 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝑣 ∈ 𝐵 ) |
25 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → 𝑢 ≲ 𝑣 ) |
26 |
1 2 3 4 5 20 21 22 23 24 25
|
mgcmnt2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑢 ≲ 𝑣 ) → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) |
27 |
26
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
28 |
27
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
29 |
28
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
30 |
19 29
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) |
31 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) → 𝑉 ∈ Proset ) |
32 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) → 𝑊 ∈ Proset ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) → 𝐹 𝐻 𝐺 ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) → 𝑢 ∈ 𝐵 ) |
35 |
1 2 3 4 5 31 32 33 34
|
mgccole2 |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
36 |
35
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑉 ∈ Proset ) |
38 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑊 ∈ Proset ) |
39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 𝐻 𝐺 ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
41 |
1 2 3 4 5 37 38 39 40
|
mgccole1 |
⊢ ( ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
36 42
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
30 43
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
45 |
9 44
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 𝐻 𝐺 ) → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
46 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑉 ∈ Proset ) |
47 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝑊 ∈ Proset ) |
48 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) |
49 |
48
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
50 |
48
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
51 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) |
52 |
51
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
53 |
|
breq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ≤ 𝑦 ↔ 𝑚 ≤ 𝑦 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑚 ) ) |
55 |
54
|
breq1d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
56 |
53 55
|
imbi12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑚 ≤ 𝑦 → ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
57 |
|
breq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑚 ≤ 𝑦 ↔ 𝑚 ≤ 𝑛 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) |
59 |
58
|
breq2d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑛 ) ) ) |
60 |
57 59
|
imbi12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑚 ≤ 𝑦 → ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑚 ≤ 𝑛 → ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑛 ) ) ) ) |
61 |
56 60
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑚 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( 𝑚 ≤ 𝑛 → ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑛 ) ) ) |
62 |
52 61
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ∀ 𝑚 ∈ 𝐴 ∀ 𝑛 ∈ 𝐴 ( 𝑚 ≤ 𝑛 → ( 𝐹 ‘ 𝑚 ) ≲ ( 𝐹 ‘ 𝑛 ) ) ) |
63 |
51
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
64 |
|
breq1 |
⊢ ( 𝑢 = 𝑖 → ( 𝑢 ≲ 𝑣 ↔ 𝑖 ≲ 𝑣 ) ) |
65 |
|
fveq2 |
⊢ ( 𝑢 = 𝑖 → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑖 ) ) |
66 |
65
|
breq1d |
⊢ ( 𝑢 = 𝑖 → ( ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ↔ ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
67 |
64 66
|
imbi12d |
⊢ ( 𝑢 = 𝑖 → ( ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ↔ ( 𝑖 ≲ 𝑣 → ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) |
68 |
|
breq2 |
⊢ ( 𝑣 = 𝑗 → ( 𝑖 ≲ 𝑣 ↔ 𝑖 ≲ 𝑗 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑣 = 𝑗 → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑗 ) ) |
70 |
69
|
breq2d |
⊢ ( 𝑣 = 𝑗 → ( ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑣 ) ↔ ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
71 |
68 70
|
imbi12d |
⊢ ( 𝑣 = 𝑗 → ( ( 𝑖 ≲ 𝑣 → ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ↔ ( 𝑖 ≲ 𝑗 → ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑗 ) ) ) ) |
72 |
67 71
|
cbvral2vw |
⊢ ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ↔ ∀ 𝑖 ∈ 𝐵 ∀ 𝑗 ∈ 𝐵 ( 𝑖 ≲ 𝑗 → ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
73 |
63 72
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ∀ 𝑖 ∈ 𝐵 ∀ 𝑗 ∈ 𝐵 ( 𝑖 ≲ 𝑗 → ( 𝐺 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
74 |
|
id |
⊢ ( 𝑥 = 𝑚 → 𝑥 = 𝑚 ) |
75 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑚 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
76 |
74 75
|
breq12d |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑚 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
77 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
78 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
79 |
76 77 78
|
rspcdva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
80 |
|
2fveq3 |
⊢ ( 𝑢 = 𝑖 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑖 ) ) ) |
81 |
|
id |
⊢ ( 𝑢 = 𝑖 → 𝑢 = 𝑖 ) |
82 |
80 81
|
breq12d |
⊢ ( 𝑢 = 𝑖 → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑖 ) ) ≲ 𝑖 ) ) |
83 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑖 ∈ 𝐵 ) → ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
84 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑖 ∈ 𝐵 ) → 𝑖 ∈ 𝐵 ) |
85 |
82 83 84
|
rspcdva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑖 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑖 ) ) ≲ 𝑖 ) |
86 |
1 2 3 4 5 46 47 49 50 62 73 79 85
|
dfmgc2lem |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝐹 𝐻 𝐺 ) |
87 |
86
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝐹 𝐻 𝐺 ) |
88 |
87
|
anasss |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) → 𝐹 𝐻 𝐺 ) |
89 |
88
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) → 𝐹 𝐻 𝐺 ) |
90 |
45 89
|
impbida |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) ) |