Metamath Proof Explorer


Theorem dfmgc2lem

Description: Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
mgcoval.3 = ( le ‘ 𝑉 )
mgcoval.4 = ( le ‘ 𝑊 )
mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
mgcval.2 ( 𝜑𝑉 ∈ Proset )
mgcval.3 ( 𝜑𝑊 ∈ Proset )
dfmgc2lem.1 ( 𝜑𝐹 : 𝐴𝐵 )
dfmgc2lem.2 ( 𝜑𝐺 : 𝐵𝐴 )
dfmgc2lem.3 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
dfmgc2lem.4 ( 𝜑 → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
dfmgc2lem.5 ( ( 𝜑𝑥𝐴 ) → 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
dfmgc2lem.6 ( ( 𝜑𝑢𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
Assertion dfmgc2lem ( 𝜑𝐹 𝐻 𝐺 )

Proof

Step Hyp Ref Expression
1 mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
2 mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
3 mgcoval.3 = ( le ‘ 𝑉 )
4 mgcoval.4 = ( le ‘ 𝑊 )
5 mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
6 mgcval.2 ( 𝜑𝑉 ∈ Proset )
7 mgcval.3 ( 𝜑𝑊 ∈ Proset )
8 dfmgc2lem.1 ( 𝜑𝐹 : 𝐴𝐵 )
9 dfmgc2lem.2 ( 𝜑𝐺 : 𝐵𝐴 )
10 dfmgc2lem.3 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
11 dfmgc2lem.4 ( 𝜑 → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
12 dfmgc2lem.5 ( ( 𝜑𝑥𝐴 ) → 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
13 dfmgc2lem.6 ( ( 𝜑𝑢𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
14 8 9 jca ( 𝜑 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) )
15 6 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝑉 ∈ Proset )
16 simplr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → 𝑧𝐴 )
17 16 adantr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝑧𝐴 )
18 9 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝐺 : 𝐵𝐴 )
19 8 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝐹 : 𝐴𝐵 )
20 19 17 ffvelrnd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
21 18 20 ffvelrnd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ∈ 𝐴 )
22 9 ad2antrr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → 𝐺 : 𝐵𝐴 )
23 simpr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → 𝑤𝐵 )
24 22 23 ffvelrnd ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( 𝐺𝑤 ) ∈ 𝐴 )
25 24 adantr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ( 𝐺𝑤 ) ∈ 𝐴 )
26 12 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
27 26 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) )
28 simpr ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 )
29 28 fveq2d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
30 29 fveq2d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝐺 ‘ ( 𝐹𝑥 ) ) = ( 𝐺 ‘ ( 𝐹𝑧 ) ) )
31 28 30 breq12d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) ↔ 𝑧 ( 𝐺 ‘ ( 𝐹𝑧 ) ) ) )
32 17 31 rspcdv ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ( ∀ 𝑥𝐴 𝑥 ( 𝐺 ‘ ( 𝐹𝑥 ) ) → 𝑧 ( 𝐺 ‘ ( 𝐹𝑧 ) ) ) )
33 27 32 mpd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝑧 ( 𝐺 ‘ ( 𝐹𝑧 ) ) )
34 11 ad2antrr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) )
35 breq1 ( 𝑢 = ( 𝐹𝑧 ) → ( 𝑢 𝑣 ↔ ( 𝐹𝑧 ) 𝑣 ) )
36 fveq2 ( 𝑢 = ( 𝐹𝑧 ) → ( 𝐺𝑢 ) = ( 𝐺 ‘ ( 𝐹𝑧 ) ) )
37 36 breq1d ( 𝑢 = ( 𝐹𝑧 ) → ( ( 𝐺𝑢 ) ( 𝐺𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑣 ) ) )
38 35 37 imbi12d ( 𝑢 = ( 𝐹𝑧 ) → ( ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) ↔ ( ( 𝐹𝑧 ) 𝑣 → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑣 ) ) ) )
39 breq2 ( 𝑣 = 𝑤 → ( ( 𝐹𝑧 ) 𝑣 ↔ ( 𝐹𝑧 ) 𝑤 ) )
40 fveq2 ( 𝑣 = 𝑤 → ( 𝐺𝑣 ) = ( 𝐺𝑤 ) )
41 40 breq2d ( 𝑣 = 𝑤 → ( ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) ) )
42 39 41 imbi12d ( 𝑣 = 𝑤 → ( ( ( 𝐹𝑧 ) 𝑣 → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑣 ) ) ↔ ( ( 𝐹𝑧 ) 𝑤 → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) ) ) )
43 8 ffvelrnda ( ( 𝜑𝑧𝐴 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
44 43 adantr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( 𝐹𝑧 ) ∈ 𝐵 )
45 eqidd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑢 = ( 𝐹𝑧 ) ) → 𝐵 = 𝐵 )
46 38 42 44 45 23 rspc2vd ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( ∀ 𝑢𝐵𝑣𝐵 ( 𝑢 𝑣 → ( 𝐺𝑢 ) ( 𝐺𝑣 ) ) → ( ( 𝐹𝑧 ) 𝑤 → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) ) ) )
47 34 46 mpd ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( ( 𝐹𝑧 ) 𝑤 → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) ) )
48 47 imp ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) )
49 1 3 prstr ( ( 𝑉 ∈ Proset ∧ ( 𝑧𝐴 ∧ ( 𝐺 ‘ ( 𝐹𝑧 ) ) ∈ 𝐴 ∧ ( 𝐺𝑤 ) ∈ 𝐴 ) ∧ ( 𝑧 ( 𝐺 ‘ ( 𝐹𝑧 ) ) ∧ ( 𝐺 ‘ ( 𝐹𝑧 ) ) ( 𝐺𝑤 ) ) ) → 𝑧 ( 𝐺𝑤 ) )
50 15 17 21 25 33 48 49 syl132anc ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ ( 𝐹𝑧 ) 𝑤 ) → 𝑧 ( 𝐺𝑤 ) )
51 7 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → 𝑊 ∈ Proset )
52 43 ad2antrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐹𝑧 ) ∈ 𝐵 )
53 8 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → 𝐹 : 𝐴𝐵 )
54 24 adantr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐺𝑤 ) ∈ 𝐴 )
55 53 54 ffvelrnd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐹 ‘ ( 𝐺𝑤 ) ) ∈ 𝐵 )
56 simplr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → 𝑤𝐵 )
57 10 ad2antrr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
58 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝑦𝑧 𝑦 ) )
59 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
60 59 breq1d ( 𝑥 = 𝑧 → ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ↔ ( 𝐹𝑧 ) ( 𝐹𝑦 ) ) )
61 58 60 imbi12d ( 𝑥 = 𝑧 → ( ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ↔ ( 𝑧 𝑦 → ( 𝐹𝑧 ) ( 𝐹𝑦 ) ) ) )
62 breq2 ( 𝑦 = ( 𝐺𝑤 ) → ( 𝑧 𝑦𝑧 ( 𝐺𝑤 ) ) )
63 fveq2 ( 𝑦 = ( 𝐺𝑤 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐺𝑤 ) ) )
64 63 breq2d ( 𝑦 = ( 𝐺𝑤 ) → ( ( 𝐹𝑧 ) ( 𝐹𝑦 ) ↔ ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) ) )
65 62 64 imbi12d ( 𝑦 = ( 𝐺𝑤 ) → ( ( 𝑧 𝑦 → ( 𝐹𝑧 ) ( 𝐹𝑦 ) ) ↔ ( 𝑧 ( 𝐺𝑤 ) → ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) ) ) )
66 eqidd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑥 = 𝑧 ) → 𝐴 = 𝐴 )
67 61 65 16 66 24 rspc2vd ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) → ( 𝑧 ( 𝐺𝑤 ) → ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) ) ) )
68 57 67 mpd ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( 𝑧 ( 𝐺𝑤 ) → ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) ) )
69 68 imp ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) )
70 13 ralrimiva ( 𝜑 → ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
71 70 ad3antrrr ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 )
72 simpr ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) ∧ 𝑢 = 𝑤 ) → 𝑢 = 𝑤 )
73 72 fveq2d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( 𝐺𝑢 ) = ( 𝐺𝑤 ) )
74 73 fveq2d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( 𝐹 ‘ ( 𝐺𝑢 ) ) = ( 𝐹 ‘ ( 𝐺𝑤 ) ) )
75 74 72 breq12d ( ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 ↔ ( 𝐹 ‘ ( 𝐺𝑤 ) ) 𝑤 ) )
76 56 75 rspcdv ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( ∀ 𝑢𝐵 ( 𝐹 ‘ ( 𝐺𝑢 ) ) 𝑢 → ( 𝐹 ‘ ( 𝐺𝑤 ) ) 𝑤 ) )
77 71 76 mpd ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐹 ‘ ( 𝐺𝑤 ) ) 𝑤 )
78 2 4 prstr ( ( 𝑊 ∈ Proset ∧ ( ( 𝐹𝑧 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝐺𝑤 ) ) ∈ 𝐵𝑤𝐵 ) ∧ ( ( 𝐹𝑧 ) ( 𝐹 ‘ ( 𝐺𝑤 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑤 ) ) 𝑤 ) ) → ( 𝐹𝑧 ) 𝑤 )
79 51 52 55 56 69 77 78 syl132anc ( ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) ∧ 𝑧 ( 𝐺𝑤 ) ) → ( 𝐹𝑧 ) 𝑤 )
80 50 79 impbida ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑤𝐵 ) → ( ( 𝐹𝑧 ) 𝑤𝑧 ( 𝐺𝑤 ) ) )
81 80 anasss ( ( 𝜑 ∧ ( 𝑧𝐴𝑤𝐵 ) ) → ( ( 𝐹𝑧 ) 𝑤𝑧 ( 𝐺𝑤 ) ) )
82 81 ralrimivva ( 𝜑 → ∀ 𝑧𝐴𝑤𝐵 ( ( 𝐹𝑧 ) 𝑤𝑧 ( 𝐺𝑤 ) ) )
83 1 2 3 4 5 6 7 mgcval ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑧𝐴𝑤𝐵 ( ( 𝐹𝑧 ) 𝑤𝑧 ( 𝐺𝑤 ) ) ) ) )
84 14 82 83 mpbir2and ( 𝜑𝐹 𝐻 𝐺 )