Step |
Hyp |
Ref |
Expression |
1 |
|
mgcoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mgcoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mgcoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mgcoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
|
mgcval.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
6 |
|
mgcval.2 |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
7 |
|
mgcval.3 |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
8 |
|
dfmgc2lem.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
|
dfmgc2lem.2 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
10 |
|
dfmgc2lem.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
|
dfmgc2lem.4 |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
12 |
|
dfmgc2lem.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
|
dfmgc2lem.6 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
14 |
8 9
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) |
15 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝑉 ∈ Proset ) |
16 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑧 ∈ 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝑧 ∈ 𝐴 ) |
18 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
19 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
20 |
19 17
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
21 |
18 20
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) |
22 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
23 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝐴 ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝐴 ) |
26 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
28 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
29 |
28
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
30 |
29
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
31 |
28 30
|
breq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑧 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
32 |
17 31
|
rspcdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) → 𝑧 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
33 |
27 32
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝑧 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
34 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
35 |
|
breq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝑢 ≲ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ≲ 𝑣 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
37 |
36
|
breq1d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) |
38 |
35 37
|
imbi12d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑣 ) ) ) ) |
39 |
|
breq2 |
⊢ ( 𝑣 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑤 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑣 ) ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
42 |
39 41
|
imbi12d |
⊢ ( 𝑣 = 𝑤 → ( ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑣 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) ) ) |
43 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
45 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 = ( 𝐹 ‘ 𝑧 ) ) → 𝐵 = 𝐵 ) |
46 |
38 42 44 45 23
|
rspc2vd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ≲ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≤ ( 𝐺 ‘ 𝑣 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) ) ) |
47 |
34 46
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
48 |
47
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) |
49 |
1 3
|
prstr |
⊢ ( ( 𝑉 ∈ Proset ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝐴 ) ∧ ( 𝑧 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( 𝐺 ‘ 𝑤 ) ) ) → 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) |
50 |
15 17 21 25 33 48 49
|
syl132anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) → 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) |
51 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → 𝑊 ∈ Proset ) |
52 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
53 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
54 |
24
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝐴 ) |
55 |
53 54
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ 𝐵 ) |
56 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → 𝑤 ∈ 𝐵 ) |
57 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) |
59 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
60 |
59
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
58 60
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ≤ 𝑦 → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
62 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
64 |
63
|
breq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑧 ≤ 𝑦 → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
66 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = 𝑧 ) → 𝐴 = 𝐴 ) |
67 |
61 65 16 66 24
|
rspc2vd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
68 |
57 67
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
69 |
68
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
70 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
71 |
70
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ) |
72 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ∧ 𝑢 = 𝑤 ) → 𝑢 = 𝑤 ) |
73 |
72
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑤 ) ) |
74 |
73
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
75 |
74 72
|
breq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ∧ 𝑢 = 𝑤 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ≲ 𝑤 ) ) |
76 |
56 75
|
rspcdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( ∀ 𝑢 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ≲ 𝑢 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ≲ 𝑤 ) ) |
77 |
71 76
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ≲ 𝑤 ) |
78 |
2 4
|
prstr |
⊢ ( ( 𝑊 ∈ Proset ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ≲ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ≲ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) |
79 |
51 52 55 56 69 77 78
|
syl132anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ) |
80 |
50 79
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ↔ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
81 |
80
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ↔ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
82 |
81
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ↔ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ) |
83 |
1 2 3 4 5 6 7
|
mgcval |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ≲ 𝑤 ↔ 𝑧 ≤ ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
84 |
14 82 83
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |