Step |
Hyp |
Ref |
Expression |
1 |
|
mgcoval.1 |
|- A = ( Base ` V ) |
2 |
|
mgcoval.2 |
|- B = ( Base ` W ) |
3 |
|
mgcoval.3 |
|- .<_ = ( le ` V ) |
4 |
|
mgcoval.4 |
|- .c_ = ( le ` W ) |
5 |
|
mgcval.1 |
|- H = ( V MGalConn W ) |
6 |
|
mgcval.2 |
|- ( ph -> V e. Proset ) |
7 |
|
mgcval.3 |
|- ( ph -> W e. Proset ) |
8 |
|
dfmgc2lem.1 |
|- ( ph -> F : A --> B ) |
9 |
|
dfmgc2lem.2 |
|- ( ph -> G : B --> A ) |
10 |
|
dfmgc2lem.3 |
|- ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) |
11 |
|
dfmgc2lem.4 |
|- ( ph -> A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) |
12 |
|
dfmgc2lem.5 |
|- ( ( ph /\ x e. A ) -> x .<_ ( G ` ( F ` x ) ) ) |
13 |
|
dfmgc2lem.6 |
|- ( ( ph /\ u e. B ) -> ( F ` ( G ` u ) ) .c_ u ) |
14 |
8 9
|
jca |
|- ( ph -> ( F : A --> B /\ G : B --> A ) ) |
15 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> V e. Proset ) |
16 |
|
simplr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> z e. A ) |
17 |
16
|
adantr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> z e. A ) |
18 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> G : B --> A ) |
19 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> F : A --> B ) |
20 |
19 17
|
ffvelrnd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> ( F ` z ) e. B ) |
21 |
18 20
|
ffvelrnd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> ( G ` ( F ` z ) ) e. A ) |
22 |
9
|
ad2antrr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> G : B --> A ) |
23 |
|
simpr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> w e. B ) |
24 |
22 23
|
ffvelrnd |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( G ` w ) e. A ) |
25 |
24
|
adantr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> ( G ` w ) e. A ) |
26 |
12
|
ralrimiva |
|- ( ph -> A. x e. A x .<_ ( G ` ( F ` x ) ) ) |
27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> A. x e. A x .<_ ( G ` ( F ` x ) ) ) |
28 |
|
simpr |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) /\ x = z ) -> x = z ) |
29 |
28
|
fveq2d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) /\ x = z ) -> ( F ` x ) = ( F ` z ) ) |
30 |
29
|
fveq2d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) /\ x = z ) -> ( G ` ( F ` x ) ) = ( G ` ( F ` z ) ) ) |
31 |
28 30
|
breq12d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) /\ x = z ) -> ( x .<_ ( G ` ( F ` x ) ) <-> z .<_ ( G ` ( F ` z ) ) ) ) |
32 |
17 31
|
rspcdv |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> ( A. x e. A x .<_ ( G ` ( F ` x ) ) -> z .<_ ( G ` ( F ` z ) ) ) ) |
33 |
27 32
|
mpd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> z .<_ ( G ` ( F ` z ) ) ) |
34 |
11
|
ad2antrr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) |
35 |
|
breq1 |
|- ( u = ( F ` z ) -> ( u .c_ v <-> ( F ` z ) .c_ v ) ) |
36 |
|
fveq2 |
|- ( u = ( F ` z ) -> ( G ` u ) = ( G ` ( F ` z ) ) ) |
37 |
36
|
breq1d |
|- ( u = ( F ` z ) -> ( ( G ` u ) .<_ ( G ` v ) <-> ( G ` ( F ` z ) ) .<_ ( G ` v ) ) ) |
38 |
35 37
|
imbi12d |
|- ( u = ( F ` z ) -> ( ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) <-> ( ( F ` z ) .c_ v -> ( G ` ( F ` z ) ) .<_ ( G ` v ) ) ) ) |
39 |
|
breq2 |
|- ( v = w -> ( ( F ` z ) .c_ v <-> ( F ` z ) .c_ w ) ) |
40 |
|
fveq2 |
|- ( v = w -> ( G ` v ) = ( G ` w ) ) |
41 |
40
|
breq2d |
|- ( v = w -> ( ( G ` ( F ` z ) ) .<_ ( G ` v ) <-> ( G ` ( F ` z ) ) .<_ ( G ` w ) ) ) |
42 |
39 41
|
imbi12d |
|- ( v = w -> ( ( ( F ` z ) .c_ v -> ( G ` ( F ` z ) ) .<_ ( G ` v ) ) <-> ( ( F ` z ) .c_ w -> ( G ` ( F ` z ) ) .<_ ( G ` w ) ) ) ) |
43 |
8
|
ffvelrnda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. B ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( F ` z ) e. B ) |
45 |
|
eqidd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ u = ( F ` z ) ) -> B = B ) |
46 |
38 42 44 45 23
|
rspc2vd |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) -> ( ( F ` z ) .c_ w -> ( G ` ( F ` z ) ) .<_ ( G ` w ) ) ) ) |
47 |
34 46
|
mpd |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( ( F ` z ) .c_ w -> ( G ` ( F ` z ) ) .<_ ( G ` w ) ) ) |
48 |
47
|
imp |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> ( G ` ( F ` z ) ) .<_ ( G ` w ) ) |
49 |
1 3
|
prstr |
|- ( ( V e. Proset /\ ( z e. A /\ ( G ` ( F ` z ) ) e. A /\ ( G ` w ) e. A ) /\ ( z .<_ ( G ` ( F ` z ) ) /\ ( G ` ( F ` z ) ) .<_ ( G ` w ) ) ) -> z .<_ ( G ` w ) ) |
50 |
15 17 21 25 33 48 49
|
syl132anc |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ ( F ` z ) .c_ w ) -> z .<_ ( G ` w ) ) |
51 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> W e. Proset ) |
52 |
43
|
ad2antrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( F ` z ) e. B ) |
53 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> F : A --> B ) |
54 |
24
|
adantr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( G ` w ) e. A ) |
55 |
53 54
|
ffvelrnd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( F ` ( G ` w ) ) e. B ) |
56 |
|
simplr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> w e. B ) |
57 |
10
|
ad2antrr |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) |
58 |
|
breq1 |
|- ( x = z -> ( x .<_ y <-> z .<_ y ) ) |
59 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
60 |
59
|
breq1d |
|- ( x = z -> ( ( F ` x ) .c_ ( F ` y ) <-> ( F ` z ) .c_ ( F ` y ) ) ) |
61 |
58 60
|
imbi12d |
|- ( x = z -> ( ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) <-> ( z .<_ y -> ( F ` z ) .c_ ( F ` y ) ) ) ) |
62 |
|
breq2 |
|- ( y = ( G ` w ) -> ( z .<_ y <-> z .<_ ( G ` w ) ) ) |
63 |
|
fveq2 |
|- ( y = ( G ` w ) -> ( F ` y ) = ( F ` ( G ` w ) ) ) |
64 |
63
|
breq2d |
|- ( y = ( G ` w ) -> ( ( F ` z ) .c_ ( F ` y ) <-> ( F ` z ) .c_ ( F ` ( G ` w ) ) ) ) |
65 |
62 64
|
imbi12d |
|- ( y = ( G ` w ) -> ( ( z .<_ y -> ( F ` z ) .c_ ( F ` y ) ) <-> ( z .<_ ( G ` w ) -> ( F ` z ) .c_ ( F ` ( G ` w ) ) ) ) ) |
66 |
|
eqidd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ x = z ) -> A = A ) |
67 |
61 65 16 66 24
|
rspc2vd |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) -> ( z .<_ ( G ` w ) -> ( F ` z ) .c_ ( F ` ( G ` w ) ) ) ) ) |
68 |
57 67
|
mpd |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( z .<_ ( G ` w ) -> ( F ` z ) .c_ ( F ` ( G ` w ) ) ) ) |
69 |
68
|
imp |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( F ` z ) .c_ ( F ` ( G ` w ) ) ) |
70 |
13
|
ralrimiva |
|- ( ph -> A. u e. B ( F ` ( G ` u ) ) .c_ u ) |
71 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> A. u e. B ( F ` ( G ` u ) ) .c_ u ) |
72 |
|
simpr |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) /\ u = w ) -> u = w ) |
73 |
72
|
fveq2d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) /\ u = w ) -> ( G ` u ) = ( G ` w ) ) |
74 |
73
|
fveq2d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) /\ u = w ) -> ( F ` ( G ` u ) ) = ( F ` ( G ` w ) ) ) |
75 |
74 72
|
breq12d |
|- ( ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) /\ u = w ) -> ( ( F ` ( G ` u ) ) .c_ u <-> ( F ` ( G ` w ) ) .c_ w ) ) |
76 |
56 75
|
rspcdv |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( A. u e. B ( F ` ( G ` u ) ) .c_ u -> ( F ` ( G ` w ) ) .c_ w ) ) |
77 |
71 76
|
mpd |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( F ` ( G ` w ) ) .c_ w ) |
78 |
2 4
|
prstr |
|- ( ( W e. Proset /\ ( ( F ` z ) e. B /\ ( F ` ( G ` w ) ) e. B /\ w e. B ) /\ ( ( F ` z ) .c_ ( F ` ( G ` w ) ) /\ ( F ` ( G ` w ) ) .c_ w ) ) -> ( F ` z ) .c_ w ) |
79 |
51 52 55 56 69 77 78
|
syl132anc |
|- ( ( ( ( ph /\ z e. A ) /\ w e. B ) /\ z .<_ ( G ` w ) ) -> ( F ` z ) .c_ w ) |
80 |
50 79
|
impbida |
|- ( ( ( ph /\ z e. A ) /\ w e. B ) -> ( ( F ` z ) .c_ w <-> z .<_ ( G ` w ) ) ) |
81 |
80
|
anasss |
|- ( ( ph /\ ( z e. A /\ w e. B ) ) -> ( ( F ` z ) .c_ w <-> z .<_ ( G ` w ) ) ) |
82 |
81
|
ralrimivva |
|- ( ph -> A. z e. A A. w e. B ( ( F ` z ) .c_ w <-> z .<_ ( G ` w ) ) ) |
83 |
1 2 3 4 5 6 7
|
mgcval |
|- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. z e. A A. w e. B ( ( F ` z ) .c_ w <-> z .<_ ( G ` w ) ) ) ) ) |
84 |
14 82 83
|
mpbir2and |
|- ( ph -> F H G ) |