Step |
Hyp |
Ref |
Expression |
1 |
|
mgcmntd.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
2 |
|
mgcmntd.2 |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
3 |
|
mgcmntd.3 |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
4 |
|
mgcmntd.4 |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
8 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
9 |
5 6 7 8 1 2 3 4
|
mgcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) |
10 |
5 6 7 8 1 2 3
|
dfmgc2 |
⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑢 ( le ‘ 𝑊 ) 𝑣 → ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ( le ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) ) |
11 |
4 10
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑢 ( le ‘ 𝑊 ) 𝑣 → ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑣 ) ) ) ∧ ( ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ( le ‘ 𝑊 ) 𝑢 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
12 |
11
|
simprld |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑢 ( le ‘ 𝑊 ) 𝑣 → ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑣 ) ) ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
5 6 7 8
|
ismnt |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
15 |
14
|
biimpar |
⊢ ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑉 ) ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) |
16 |
2 3 9 13 15
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) |