Metamath Proof Explorer


Theorem mgcmnt1d

Description: Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024)

Ref Expression
Hypotheses mgcmntd.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcmntd.2 φ V Proset
mgcmntd.3 φ W Proset
mgcmntd.4 φ F H G
Assertion mgcmnt1d Could not format assertion : No typesetting found for |- ( ph -> F e. ( V Monot W ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgcmntd.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgcmntd.2 φ V Proset
3 mgcmntd.3 φ W Proset
4 mgcmntd.4 φ F H G
5 eqid Base V = Base V
6 eqid Base W = Base W
7 eqid V = V
8 eqid W = W
9 5 6 7 8 1 2 3 4 mgcf1 φ F : Base V Base W
10 5 6 7 8 1 2 3 dfmgc2 φ F H G F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
11 4 10 mpbid φ F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
12 11 simprld φ x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v
13 12 simpld φ x Base V y Base V x V y F x W F y
14 5 6 7 8 ismnt Could not format ( ( V e. Proset /\ W e. Proset ) -> ( F e. ( V Monot W ) <-> ( F : ( Base ` V ) --> ( Base ` W ) /\ A. x e. ( Base ` V ) A. y e. ( Base ` V ) ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( V e. Proset /\ W e. Proset ) -> ( F e. ( V Monot W ) <-> ( F : ( Base ` V ) --> ( Base ` W ) /\ A. x e. ( Base ` V ) A. y e. ( Base ` V ) ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) ) with typecode |-
15 14 biimpar Could not format ( ( ( V e. Proset /\ W e. Proset ) /\ ( F : ( Base ` V ) --> ( Base ` W ) /\ A. x e. ( Base ` V ) A. y e. ( Base ` V ) ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) -> F e. ( V Monot W ) ) : No typesetting found for |- ( ( ( V e. Proset /\ W e. Proset ) /\ ( F : ( Base ` V ) --> ( Base ` W ) /\ A. x e. ( Base ` V ) A. y e. ( Base ` V ) ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) -> F e. ( V Monot W ) ) with typecode |-
16 2 3 9 13 15 syl22anc Could not format ( ph -> F e. ( V Monot W ) ) : No typesetting found for |- ( ph -> F e. ( V Monot W ) ) with typecode |-