Metamath Proof Explorer


Theorem mgcmnt2d

Description: Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024)

Ref Expression
Hypotheses mgcmntd.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcmntd.2 φ V Proset
mgcmntd.3 φ W Proset
mgcmntd.4 φ F H G
Assertion mgcmnt2d Could not format assertion : No typesetting found for |- ( ph -> G e. ( W Monot V ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgcmntd.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgcmntd.2 φ V Proset
3 mgcmntd.3 φ W Proset
4 mgcmntd.4 φ F H G
5 eqid Base V = Base V
6 eqid Base W = Base W
7 eqid V = V
8 eqid W = W
9 5 6 7 8 1 2 3 4 mgcf2 φ G : Base W Base V
10 5 6 7 8 1 2 3 dfmgc2 φ F H G F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
11 4 10 mpbid φ F : Base V Base W G : Base W Base V x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v u Base W F G u W u x Base V x V G F x
12 11 simprld φ x Base V y Base V x V y F x W F y u Base W v Base W u W v G u V G v
13 12 simprd φ u Base W v Base W u W v G u V G v
14 6 5 8 7 ismnt Could not format ( ( W e. Proset /\ V e. Proset ) -> ( G e. ( W Monot V ) <-> ( G : ( Base ` W ) --> ( Base ` V ) /\ A. u e. ( Base ` W ) A. v e. ( Base ` W ) ( u ( le ` W ) v -> ( G ` u ) ( le ` V ) ( G ` v ) ) ) ) ) : No typesetting found for |- ( ( W e. Proset /\ V e. Proset ) -> ( G e. ( W Monot V ) <-> ( G : ( Base ` W ) --> ( Base ` V ) /\ A. u e. ( Base ` W ) A. v e. ( Base ` W ) ( u ( le ` W ) v -> ( G ` u ) ( le ` V ) ( G ` v ) ) ) ) ) with typecode |-
15 14 biimpar Could not format ( ( ( W e. Proset /\ V e. Proset ) /\ ( G : ( Base ` W ) --> ( Base ` V ) /\ A. u e. ( Base ` W ) A. v e. ( Base ` W ) ( u ( le ` W ) v -> ( G ` u ) ( le ` V ) ( G ` v ) ) ) ) -> G e. ( W Monot V ) ) : No typesetting found for |- ( ( ( W e. Proset /\ V e. Proset ) /\ ( G : ( Base ` W ) --> ( Base ` V ) /\ A. u e. ( Base ` W ) A. v e. ( Base ` W ) ( u ( le ` W ) v -> ( G ` u ) ( le ` V ) ( G ` v ) ) ) ) -> G e. ( W Monot V ) ) with typecode |-
16 3 2 9 13 15 syl22anc Could not format ( ph -> G e. ( W Monot V ) ) : No typesetting found for |- ( ph -> G e. ( W Monot V ) ) with typecode |-