Step |
Hyp |
Ref |
Expression |
1 |
|
mntoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mntoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mntoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mntoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
1 2 3 4
|
mntoval |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑉 Monot 𝑊 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
9 |
7 8
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
11 |
10
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
13 |
6 12
|
bitrdi |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
14 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
15 |
1
|
fvexi |
⊢ 𝐴 ∈ V |
16 |
14 15
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
17 |
16
|
anbi1i |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) |
18 |
13 17
|
bitrdi |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≲ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |