Metamath Proof Explorer


Theorem mntoval

Description: Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024)

Ref Expression
Hypotheses mntoval.1 𝐴 = ( Base ‘ 𝑉 )
mntoval.2 𝐵 = ( Base ‘ 𝑊 )
mntoval.3 = ( le ‘ 𝑉 )
mntoval.4 = ( le ‘ 𝑊 )
Assertion mntoval ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝑉 Monot 𝑊 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 mntoval.1 𝐴 = ( Base ‘ 𝑉 )
2 mntoval.2 𝐵 = ( Base ‘ 𝑊 )
3 mntoval.3 = ( le ‘ 𝑉 )
4 mntoval.4 = ( le ‘ 𝑊 )
5 df-mnt Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } )
6 5 a1i ( ( 𝑉𝑋𝑊𝑌 ) → Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } ) )
7 fvexd ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) → ( Base ‘ 𝑣 ) ∈ V )
8 fveq2 ( 𝑣 = 𝑉 → ( Base ‘ 𝑣 ) = ( Base ‘ 𝑉 ) )
9 8 1 eqtr4di ( 𝑣 = 𝑉 → ( Base ‘ 𝑣 ) = 𝐴 )
10 9 adantr ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) → ( Base ‘ 𝑣 ) = 𝐴 )
11 simplr ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑤 = 𝑊 )
12 11 fveq2d ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
13 12 2 eqtr4di ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = 𝐵 )
14 simpr ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 )
15 13 14 oveq12d ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) = ( 𝐵m 𝐴 ) )
16 simpll ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑣 = 𝑉 )
17 16 fveq2d ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑣 ) = ( le ‘ 𝑉 ) )
18 17 3 eqtr4di ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑣 ) = )
19 18 breqd ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( 𝑥 ( le ‘ 𝑣 ) 𝑦𝑥 𝑦 ) )
20 11 fveq2d ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑤 ) = ( le ‘ 𝑊 ) )
21 20 4 eqtr4di ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑤 ) = )
22 21 breqd ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) )
23 19 22 imbi12d ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) ↔ ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) )
24 14 23 raleqbidv ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ∀ 𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) )
25 14 24 raleqbidv ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) )
26 15 25 rabeqbidv ( ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } )
27 7 10 26 csbied2 ( ( 𝑣 = 𝑉𝑤 = 𝑊 ) → ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } )
28 27 adantl ( ( ( 𝑉𝑋𝑊𝑌 ) ∧ ( 𝑣 = 𝑉𝑤 = 𝑊 ) ) → ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } )
29 elex ( 𝑉𝑋𝑉 ∈ V )
30 29 adantr ( ( 𝑉𝑋𝑊𝑌 ) → 𝑉 ∈ V )
31 elex ( 𝑊𝑌𝑊 ∈ V )
32 31 adantl ( ( 𝑉𝑋𝑊𝑌 ) → 𝑊 ∈ V )
33 eqid { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) }
34 ovexd ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝐵m 𝐴 ) ∈ V )
35 33 34 rabexd ( ( 𝑉𝑋𝑊𝑌 ) → { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } ∈ V )
36 6 28 30 32 35 ovmpod ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝑉 Monot 𝑊 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑦 → ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) } )