Step |
Hyp |
Ref |
Expression |
1 |
|
mntoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mntoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mntoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mntoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
|
df-mnt |
⊢ Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
6 |
5
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } ) ) |
7 |
|
fvexd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) → ( Base ‘ 𝑣 ) ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( Base ‘ 𝑣 ) = ( Base ‘ 𝑉 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑣 = 𝑉 → ( Base ‘ 𝑣 ) = 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) → ( Base ‘ 𝑣 ) = 𝐴 ) |
11 |
|
simplr |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑤 = 𝑊 ) |
12 |
11
|
fveq2d |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
14 |
|
simpr |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
15 |
13 14
|
oveq12d |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) = ( 𝐵 ↑m 𝐴 ) ) |
16 |
|
simpll |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → 𝑣 = 𝑉 ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑣 ) = ( le ‘ 𝑉 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑣 ) = ≤ ) |
19 |
18
|
breqd |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( 𝑥 ( le ‘ 𝑣 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
20 |
11
|
fveq2d |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑤 ) = ( le ‘ 𝑊 ) ) |
21 |
20 4
|
eqtr4di |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( le ‘ 𝑤 ) = ≲ ) |
22 |
21
|
breqd |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ) ) |
24 |
14 23
|
raleqbidv |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ) ) |
25 |
14 24
|
raleqbidv |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) ) ) |
26 |
15 25
|
rabeqbidv |
⊢ ( ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ∧ 𝑎 = 𝐴 ) → { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) |
27 |
7 10 26
|
csbied2 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) → ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ ( 𝑣 = 𝑉 ∧ 𝑤 = 𝑊 ) ) → ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) |
29 |
|
elex |
⊢ ( 𝑉 ∈ 𝑋 → 𝑉 ∈ V ) |
30 |
29
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → 𝑉 ∈ V ) |
31 |
|
elex |
⊢ ( 𝑊 ∈ 𝑌 → 𝑊 ∈ V ) |
32 |
31
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → 𝑊 ∈ V ) |
33 |
|
eqid |
⊢ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } |
34 |
|
ovexd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐵 ↑m 𝐴 ) ∈ V ) |
35 |
33 34
|
rabexd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ∈ V ) |
36 |
6 28 30 32 35
|
ovmpod |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑉 Monot 𝑊 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝑓 ‘ 𝑥 ) ≲ ( 𝑓 ‘ 𝑦 ) ) } ) |