Step |
Hyp |
Ref |
Expression |
0 |
|
cmnt |
⊢ Monot |
1 |
|
vv |
⊢ 𝑣 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑣 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑣 ) |
7 |
|
va |
⊢ 𝑎 |
8 |
|
vf |
⊢ 𝑓 |
9 |
3
|
cv |
⊢ 𝑤 |
10 |
9 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
11 |
|
cmap |
⊢ ↑m |
12 |
7
|
cv |
⊢ 𝑎 |
13 |
10 12 11
|
co |
⊢ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) |
14 |
|
vx |
⊢ 𝑥 |
15 |
|
vy |
⊢ 𝑦 |
16 |
14
|
cv |
⊢ 𝑥 |
17 |
|
cple |
⊢ le |
18 |
5 17
|
cfv |
⊢ ( le ‘ 𝑣 ) |
19 |
15
|
cv |
⊢ 𝑦 |
20 |
16 19 18
|
wbr |
⊢ 𝑥 ( le ‘ 𝑣 ) 𝑦 |
21 |
8
|
cv |
⊢ 𝑓 |
22 |
16 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
23 |
9 17
|
cfv |
⊢ ( le ‘ 𝑤 ) |
24 |
19 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
25 |
22 24 23
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) |
26 |
20 25
|
wi |
⊢ ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) |
27 |
26 15 12
|
wral |
⊢ ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) |
28 |
27 14 12
|
wral |
⊢ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) |
29 |
28 8 13
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } |
30 |
7 6 29
|
csb |
⊢ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } |
31 |
1 3 2 2 30
|
cmpo |
⊢ ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
32 |
0 31
|
wceq |
⊢ Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) ( 𝑓 ‘ 𝑦 ) ) } ) |