Metamath Proof Explorer


Definition df-mnt

Description: Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mnt Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnt Monot
1 vv 𝑣
2 cvv V
3 vw 𝑤
4 cbs Base
5 1 cv 𝑣
6 5 4 cfv ( Base ‘ 𝑣 )
7 va 𝑎
8 vf 𝑓
9 3 cv 𝑤
10 9 4 cfv ( Base ‘ 𝑤 )
11 cmap m
12 7 cv 𝑎
13 10 12 11 co ( ( Base ‘ 𝑤 ) ↑m 𝑎 )
14 vx 𝑥
15 vy 𝑦
16 14 cv 𝑥
17 cple le
18 5 17 cfv ( le ‘ 𝑣 )
19 15 cv 𝑦
20 16 19 18 wbr 𝑥 ( le ‘ 𝑣 ) 𝑦
21 8 cv 𝑓
22 16 21 cfv ( 𝑓𝑥 )
23 9 17 cfv ( le ‘ 𝑤 )
24 19 21 cfv ( 𝑓𝑦 )
25 22 24 23 wbr ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 )
26 20 25 wi ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) )
27 26 15 12 wral 𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) )
28 27 14 12 wral 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) )
29 28 8 13 crab { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) }
30 7 6 29 csb ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) }
31 1 3 2 2 30 cmpo ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } )
32 0 31 wceq Monot = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 { 𝑓 ∈ ( ( Base ‘ 𝑤 ) ↑m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦𝑎 ( 𝑥 ( le ‘ 𝑣 ) 𝑦 → ( 𝑓𝑥 ) ( le ‘ 𝑤 ) ( 𝑓𝑦 ) ) } )