Metamath Proof Explorer


Definition df-mgc

Description: Define monotone Galois connections. See mgcval for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mgc MGalConn = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 ( Base ‘ 𝑤 ) / 𝑏 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgc MGalConn
1 vv 𝑣
2 cvv V
3 vw 𝑤
4 cbs Base
5 1 cv 𝑣
6 5 4 cfv ( Base ‘ 𝑣 )
7 va 𝑎
8 3 cv 𝑤
9 8 4 cfv ( Base ‘ 𝑤 )
10 vb 𝑏
11 vf 𝑓
12 vg 𝑔
13 11 cv 𝑓
14 10 cv 𝑏
15 cmap m
16 7 cv 𝑎
17 14 16 15 co ( 𝑏m 𝑎 )
18 13 17 wcel 𝑓 ∈ ( 𝑏m 𝑎 )
19 12 cv 𝑔
20 16 14 15 co ( 𝑎m 𝑏 )
21 19 20 wcel 𝑔 ∈ ( 𝑎m 𝑏 )
22 18 21 wa ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) )
23 vx 𝑥
24 vy 𝑦
25 23 cv 𝑥
26 25 13 cfv ( 𝑓𝑥 )
27 cple le
28 8 27 cfv ( le ‘ 𝑤 )
29 24 cv 𝑦
30 26 29 28 wbr ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦
31 5 27 cfv ( le ‘ 𝑣 )
32 29 19 cfv ( 𝑔𝑦 )
33 25 32 31 wbr 𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 )
34 30 33 wb ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) )
35 34 24 14 wral 𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) )
36 35 23 16 wral 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) )
37 22 36 wa ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) )
38 37 11 12 copab { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) }
39 10 9 38 csb ( Base ‘ 𝑤 ) / 𝑏 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) }
40 7 6 39 csb ( Base ‘ 𝑣 ) / 𝑎 ( Base ‘ 𝑤 ) / 𝑏 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) }
41 1 3 2 2 40 cmpo ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 ( Base ‘ 𝑤 ) / 𝑏 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) } )
42 0 41 wceq MGalConn = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ( Base ‘ 𝑣 ) / 𝑎 ( Base ‘ 𝑤 ) / 𝑏 { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑏m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎m 𝑏 ) ) ∧ ∀ 𝑥𝑎𝑦𝑏 ( ( 𝑓𝑥 ) ( le ‘ 𝑤 ) 𝑦𝑥 ( le ‘ 𝑣 ) ( 𝑔𝑦 ) ) ) } )