Step |
Hyp |
Ref |
Expression |
0 |
|
cmgc |
⊢ MGalConn |
1 |
|
vv |
⊢ 𝑣 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑣 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑣 ) |
7 |
|
va |
⊢ 𝑎 |
8 |
3
|
cv |
⊢ 𝑤 |
9 |
8 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
10 |
|
vb |
⊢ 𝑏 |
11 |
|
vf |
⊢ 𝑓 |
12 |
|
vg |
⊢ 𝑔 |
13 |
11
|
cv |
⊢ 𝑓 |
14 |
10
|
cv |
⊢ 𝑏 |
15 |
|
cmap |
⊢ ↑m |
16 |
7
|
cv |
⊢ 𝑎 |
17 |
14 16 15
|
co |
⊢ ( 𝑏 ↑m 𝑎 ) |
18 |
13 17
|
wcel |
⊢ 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) |
19 |
12
|
cv |
⊢ 𝑔 |
20 |
16 14 15
|
co |
⊢ ( 𝑎 ↑m 𝑏 ) |
21 |
19 20
|
wcel |
⊢ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) |
22 |
18 21
|
wa |
⊢ ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) |
23 |
|
vx |
⊢ 𝑥 |
24 |
|
vy |
⊢ 𝑦 |
25 |
23
|
cv |
⊢ 𝑥 |
26 |
25 13
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
27 |
|
cple |
⊢ le |
28 |
8 27
|
cfv |
⊢ ( le ‘ 𝑤 ) |
29 |
24
|
cv |
⊢ 𝑦 |
30 |
26 29 28
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 |
31 |
5 27
|
cfv |
⊢ ( le ‘ 𝑣 ) |
32 |
29 19
|
cfv |
⊢ ( 𝑔 ‘ 𝑦 ) |
33 |
25 32 31
|
wbr |
⊢ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) |
34 |
30 33
|
wb |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) |
35 |
34 24 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) |
36 |
35 23 16
|
wral |
⊢ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) |
37 |
22 36
|
wa |
⊢ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) |
38 |
37 11 12
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) } |
39 |
10 9 38
|
csb |
⊢ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) } |
40 |
7 6 39
|
csb |
⊢ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) } |
41 |
1 3 2 2 40
|
cmpo |
⊢ ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |
42 |
0 41
|
wceq |
⊢ MGalConn = ( 𝑣 ∈ V , 𝑤 ∈ V ↦ ⦋ ( Base ‘ 𝑣 ) / 𝑎 ⦌ ⦋ ( Base ‘ 𝑤 ) / 𝑏 ⦌ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 ↑m 𝑏 ) ) ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑤 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑣 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) |