Metamath Proof Explorer


Definition df-mgc

Description: Define monotone Galois connections. See mgcval for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mgc Could not format assertion : No typesetting found for |- MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgc Could not format MGalConn : No typesetting found for class MGalConn with typecode class
1 vv setvarv
2 cvv classV
3 vw setvarw
4 cbs classBase
5 1 cv setvarv
6 5 4 cfv classBasev
7 va setvara
8 3 cv setvarw
9 8 4 cfv classBasew
10 vb setvarb
11 vf setvarf
12 vg setvarg
13 11 cv setvarf
14 10 cv setvarb
15 cmap class𝑚
16 7 cv setvara
17 14 16 15 co classba
18 13 17 wcel wfffba
19 12 cv setvarg
20 16 14 15 co classab
21 19 20 wcel wffgab
22 18 21 wa wfffbagab
23 vx setvarx
24 vy setvary
25 23 cv setvarx
26 25 13 cfv classfx
27 cple classle
28 8 27 cfv classw
29 24 cv setvary
30 26 29 28 wbr wfffxwy
31 5 27 cfv classv
32 29 19 cfv classgy
33 25 32 31 wbr wffxvgy
34 30 33 wb wfffxwyxvgy
35 34 24 14 wral wffybfxwyxvgy
36 35 23 16 wral wffxaybfxwyxvgy
37 22 36 wa wfffbagabxaybfxwyxvgy
38 37 11 12 copab classfg|fbagabxaybfxwyxvgy
39 10 9 38 csb classBasew/bfg|fbagabxaybfxwyxvgy
40 7 6 39 csb classBasev/aBasew/bfg|fbagabxaybfxwyxvgy
41 1 3 2 2 40 cmpo classvV,wVBasev/aBasew/bfg|fbagabxaybfxwyxvgy
42 0 41 wceq Could not format MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) : No typesetting found for wff MGalConn = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ [_ ( Base ` w ) / b ]_ { <. f , g >. | ( ( f e. ( b ^m a ) /\ g e. ( a ^m b ) ) /\ A. x e. a A. y e. b ( ( f ` x ) ( le ` w ) y <-> x ( le ` v ) ( g ` y ) ) ) } ) with typecode wff