Metamath Proof Explorer


Definition df-mnt

Description: Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mnt Monot = v V , w V Base v / a f Base w a | x a y a x v y f x w f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnt class Monot
1 vv setvar v
2 cvv class V
3 vw setvar w
4 cbs class Base
5 1 cv setvar v
6 5 4 cfv class Base v
7 va setvar a
8 vf setvar f
9 3 cv setvar w
10 9 4 cfv class Base w
11 cmap class 𝑚
12 7 cv setvar a
13 10 12 11 co class Base w a
14 vx setvar x
15 vy setvar y
16 14 cv setvar x
17 cple class le
18 5 17 cfv class v
19 15 cv setvar y
20 16 19 18 wbr wff x v y
21 8 cv setvar f
22 16 21 cfv class f x
23 9 17 cfv class w
24 19 21 cfv class f y
25 22 24 23 wbr wff f x w f y
26 20 25 wi wff x v y f x w f y
27 26 15 12 wral wff y a x v y f x w f y
28 27 14 12 wral wff x a y a x v y f x w f y
29 28 8 13 crab class f Base w a | x a y a x v y f x w f y
30 7 6 29 csb class Base v / a f Base w a | x a y a x v y f x w f y
31 1 3 2 2 30 cmpo class v V , w V Base v / a f Base w a | x a y a x v y f x w f y
32 0 31 wceq wff Monot = v V , w V Base v / a f Base w a | x a y a x v y f x w f y