Metamath Proof Explorer


Definition df-mnt

Description: Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024)

Ref Expression
Assertion df-mnt Could not format assertion : No typesetting found for |- Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnt Could not format Monot : No typesetting found for class Monot with typecode class
1 vv setvarv
2 cvv classV
3 vw setvarw
4 cbs classBase
5 1 cv setvarv
6 5 4 cfv classBasev
7 va setvara
8 vf setvarf
9 3 cv setvarw
10 9 4 cfv classBasew
11 cmap class𝑚
12 7 cv setvara
13 10 12 11 co classBasewa
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 cple classle
18 5 17 cfv classv
19 15 cv setvary
20 16 19 18 wbr wffxvy
21 8 cv setvarf
22 16 21 cfv classfx
23 9 17 cfv classw
24 19 21 cfv classfy
25 22 24 23 wbr wfffxwfy
26 20 25 wi wffxvyfxwfy
27 26 15 12 wral wffyaxvyfxwfy
28 27 14 12 wral wffxayaxvyfxwfy
29 28 8 13 crab classfBasewa|xayaxvyfxwfy
30 7 6 29 csb classBasev/afBasewa|xayaxvyfxwfy
31 1 3 2 2 30 cmpo classvV,wVBasev/afBasewa|xayaxvyfxwfy
32 0 31 wceq Could not format Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) : No typesetting found for wff Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) with typecode wff