Step |
Hyp |
Ref |
Expression |
0 |
|
cmnt |
|- Monot |
1 |
|
vv |
|- v |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- v |
6 |
5 4
|
cfv |
|- ( Base ` v ) |
7 |
|
va |
|- a |
8 |
|
vf |
|- f |
9 |
3
|
cv |
|- w |
10 |
9 4
|
cfv |
|- ( Base ` w ) |
11 |
|
cmap |
|- ^m |
12 |
7
|
cv |
|- a |
13 |
10 12 11
|
co |
|- ( ( Base ` w ) ^m a ) |
14 |
|
vx |
|- x |
15 |
|
vy |
|- y |
16 |
14
|
cv |
|- x |
17 |
|
cple |
|- le |
18 |
5 17
|
cfv |
|- ( le ` v ) |
19 |
15
|
cv |
|- y |
20 |
16 19 18
|
wbr |
|- x ( le ` v ) y |
21 |
8
|
cv |
|- f |
22 |
16 21
|
cfv |
|- ( f ` x ) |
23 |
9 17
|
cfv |
|- ( le ` w ) |
24 |
19 21
|
cfv |
|- ( f ` y ) |
25 |
22 24 23
|
wbr |
|- ( f ` x ) ( le ` w ) ( f ` y ) |
26 |
20 25
|
wi |
|- ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) |
27 |
26 15 12
|
wral |
|- A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) |
28 |
27 14 12
|
wral |
|- A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) |
29 |
28 8 13
|
crab |
|- { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } |
30 |
7 6 29
|
csb |
|- [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } |
31 |
1 3 2 2 30
|
cmpo |
|- ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) |
32 |
0 31
|
wceq |
|- Monot = ( v e. _V , w e. _V |-> [_ ( Base ` v ) / a ]_ { f e. ( ( Base ` w ) ^m a ) | A. x e. a A. y e. a ( x ( le ` v ) y -> ( f ` x ) ( le ` w ) ( f ` y ) ) } ) |