Metamath Proof Explorer


Theorem mgcmnt2

Description: The upper adjoint G of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 A = Base V
mgcoval.2 B = Base W
mgcoval.3 ˙ = V
mgcoval.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcval.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcval.2 φ V Proset
mgcval.3 φ W Proset
mgccole.1 φ F H G
mgcmnt2.1 φ X B
mgcmnt2.2 φ Y B
mgcmnt2.3 No typesetting found for |- ( ph -> X .c_ Y ) with typecode |-
Assertion mgcmnt2 φ G X ˙ G Y

Proof

Step Hyp Ref Expression
1 mgcoval.1 A = Base V
2 mgcoval.2 B = Base W
3 mgcoval.3 ˙ = V
4 mgcoval.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 mgcval.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
6 mgcval.2 φ V Proset
7 mgcval.3 φ W Proset
8 mgccole.1 φ F H G
9 mgcmnt2.1 φ X B
10 mgcmnt2.2 φ Y B
11 mgcmnt2.3 Could not format ( ph -> X .c_ Y ) : No typesetting found for |- ( ph -> X .c_ Y ) with typecode |-
12 1 2 3 4 5 6 7 mgcval Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) with typecode |-
13 8 12 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) with typecode |-
14 13 simplld φ F : A B
15 13 simplrd φ G : B A
16 15 9 ffvelrnd φ G X A
17 14 16 ffvelrnd φ F G X B
18 1 2 3 4 5 6 7 8 9 mgccole2 Could not format ( ph -> ( F ` ( G ` X ) ) .c_ X ) : No typesetting found for |- ( ph -> ( F ` ( G ` X ) ) .c_ X ) with typecode |-
19 2 4 prstr Could not format ( ( W e. Proset /\ ( ( F ` ( G ` X ) ) e. B /\ X e. B /\ Y e. B ) /\ ( ( F ` ( G ` X ) ) .c_ X /\ X .c_ Y ) ) -> ( F ` ( G ` X ) ) .c_ Y ) : No typesetting found for |- ( ( W e. Proset /\ ( ( F ` ( G ` X ) ) e. B /\ X e. B /\ Y e. B ) /\ ( ( F ` ( G ` X ) ) .c_ X /\ X .c_ Y ) ) -> ( F ` ( G ` X ) ) .c_ Y ) with typecode |-
20 7 17 9 10 18 11 19 syl132anc Could not format ( ph -> ( F ` ( G ` X ) ) .c_ Y ) : No typesetting found for |- ( ph -> ( F ` ( G ` X ) ) .c_ Y ) with typecode |-
21 breq2 Could not format ( y = Y -> ( ( F ` ( G ` X ) ) .c_ y <-> ( F ` ( G ` X ) ) .c_ Y ) ) : No typesetting found for |- ( y = Y -> ( ( F ` ( G ` X ) ) .c_ y <-> ( F ` ( G ` X ) ) .c_ Y ) ) with typecode |-
22 fveq2 y = Y G y = G Y
23 22 breq2d y = Y G X ˙ G y G X ˙ G Y
24 21 23 bibi12d Could not format ( y = Y -> ( ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) ) : No typesetting found for |- ( y = Y -> ( ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) ) with typecode |-
25 fveq2 x = G X F x = F G X
26 25 breq1d Could not format ( x = ( G ` X ) -> ( ( F ` x ) .c_ y <-> ( F ` ( G ` X ) ) .c_ y ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( ( F ` x ) .c_ y <-> ( F ` ( G ` X ) ) .c_ y ) ) with typecode |-
27 breq1 x = G X x ˙ G y G X ˙ G y
28 26 27 bibi12d Could not format ( x = ( G ` X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) with typecode |-
29 28 ralbidv Could not format ( x = ( G ` X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) with typecode |-
30 13 simprd Could not format ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) with typecode |-
31 29 30 16 rspcdva Could not format ( ph -> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) with typecode |-
32 24 31 10 rspcdva Could not format ( ph -> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) : No typesetting found for |- ( ph -> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) with typecode |-
33 20 32 mpbid φ G X ˙ G Y