| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgcoval.1 |
|- A = ( Base ` V ) |
| 2 |
|
mgcoval.2 |
|- B = ( Base ` W ) |
| 3 |
|
mgcoval.3 |
|- .<_ = ( le ` V ) |
| 4 |
|
mgcoval.4 |
|- .c_ = ( le ` W ) |
| 5 |
|
mgcval.1 |
|- H = ( V MGalConn W ) |
| 6 |
|
mgcval.2 |
|- ( ph -> V e. Proset ) |
| 7 |
|
mgcval.3 |
|- ( ph -> W e. Proset ) |
| 8 |
|
mgccole.1 |
|- ( ph -> F H G ) |
| 9 |
|
mgcmnt2.1 |
|- ( ph -> X e. B ) |
| 10 |
|
mgcmnt2.2 |
|- ( ph -> Y e. B ) |
| 11 |
|
mgcmnt2.3 |
|- ( ph -> X .c_ Y ) |
| 12 |
1 2 3 4 5 6 7
|
mgcval |
|- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) |
| 13 |
8 12
|
mpbid |
|- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) |
| 14 |
13
|
simplld |
|- ( ph -> F : A --> B ) |
| 15 |
13
|
simplrd |
|- ( ph -> G : B --> A ) |
| 16 |
15 9
|
ffvelcdmd |
|- ( ph -> ( G ` X ) e. A ) |
| 17 |
14 16
|
ffvelcdmd |
|- ( ph -> ( F ` ( G ` X ) ) e. B ) |
| 18 |
1 2 3 4 5 6 7 8 9
|
mgccole2 |
|- ( ph -> ( F ` ( G ` X ) ) .c_ X ) |
| 19 |
2 4
|
prstr |
|- ( ( W e. Proset /\ ( ( F ` ( G ` X ) ) e. B /\ X e. B /\ Y e. B ) /\ ( ( F ` ( G ` X ) ) .c_ X /\ X .c_ Y ) ) -> ( F ` ( G ` X ) ) .c_ Y ) |
| 20 |
7 17 9 10 18 11 19
|
syl132anc |
|- ( ph -> ( F ` ( G ` X ) ) .c_ Y ) |
| 21 |
|
breq2 |
|- ( y = Y -> ( ( F ` ( G ` X ) ) .c_ y <-> ( F ` ( G ` X ) ) .c_ Y ) ) |
| 22 |
|
fveq2 |
|- ( y = Y -> ( G ` y ) = ( G ` Y ) ) |
| 23 |
22
|
breq2d |
|- ( y = Y -> ( ( G ` X ) .<_ ( G ` y ) <-> ( G ` X ) .<_ ( G ` Y ) ) ) |
| 24 |
21 23
|
bibi12d |
|- ( y = Y -> ( ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) ) |
| 25 |
|
fveq2 |
|- ( x = ( G ` X ) -> ( F ` x ) = ( F ` ( G ` X ) ) ) |
| 26 |
25
|
breq1d |
|- ( x = ( G ` X ) -> ( ( F ` x ) .c_ y <-> ( F ` ( G ` X ) ) .c_ y ) ) |
| 27 |
|
breq1 |
|- ( x = ( G ` X ) -> ( x .<_ ( G ` y ) <-> ( G ` X ) .<_ ( G ` y ) ) ) |
| 28 |
26 27
|
bibi12d |
|- ( x = ( G ` X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) |
| 29 |
28
|
ralbidv |
|- ( x = ( G ` X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) |
| 30 |
13
|
simprd |
|- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) |
| 31 |
29 30 16
|
rspcdva |
|- ( ph -> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) |
| 32 |
24 31 10
|
rspcdva |
|- ( ph -> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) |
| 33 |
20 32
|
mpbid |
|- ( ph -> ( G ` X ) .<_ ( G ` Y ) ) |