Metamath Proof Explorer


Theorem ismntd

Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024)

Ref Expression
Hypotheses ismntd.1 A = Base V
ismntd.2 B = Base W
ismntd.3 ˙ = V
ismntd.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
ismntd.5 φ V C
ismntd.6 φ W D
ismntd.7 No typesetting found for |- ( ph -> F e. ( V Monot W ) ) with typecode |-
ismntd.8 φ X A
ismntd.9 φ Y A
ismntd.10 φ X ˙ Y
Assertion ismntd Could not format assertion : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ismntd.1 A = Base V
2 ismntd.2 B = Base W
3 ismntd.3 ˙ = V
4 ismntd.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 ismntd.5 φ V C
6 ismntd.6 φ W D
7 ismntd.7 Could not format ( ph -> F e. ( V Monot W ) ) : No typesetting found for |- ( ph -> F e. ( V Monot W ) ) with typecode |-
8 ismntd.8 φ X A
9 ismntd.9 φ Y A
10 ismntd.10 φ X ˙ Y
11 1 2 3 4 ismnt Could not format ( ( V e. C /\ W e. D ) -> ( F e. ( V Monot W ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( V e. C /\ W e. D ) -> ( F e. ( V Monot W ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) ) ) with typecode |-
12 11 biimp3a Could not format ( ( V e. C /\ W e. D /\ F e. ( V Monot W ) ) -> ( F : A --> B /\ A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) ) : No typesetting found for |- ( ( V e. C /\ W e. D /\ F e. ( V Monot W ) ) -> ( F : A --> B /\ A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) ) with typecode |-
13 12 simprd Could not format ( ( V e. C /\ W e. D /\ F e. ( V Monot W ) ) -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ( V e. C /\ W e. D /\ F e. ( V Monot W ) ) -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
14 5 6 7 13 syl3anc Could not format ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) ) with typecode |-
15 breq1 x = X x ˙ y X ˙ y
16 fveq2 x = X F x = F X
17 16 breq1d Could not format ( x = X -> ( ( F ` x ) .c_ ( F ` y ) <-> ( F ` X ) .c_ ( F ` y ) ) ) : No typesetting found for |- ( x = X -> ( ( F ` x ) .c_ ( F ` y ) <-> ( F ` X ) .c_ ( F ` y ) ) ) with typecode |-
18 15 17 imbi12d Could not format ( x = X -> ( ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) <-> ( X .<_ y -> ( F ` X ) .c_ ( F ` y ) ) ) ) : No typesetting found for |- ( x = X -> ( ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) <-> ( X .<_ y -> ( F ` X ) .c_ ( F ` y ) ) ) ) with typecode |-
19 breq2 y = Y X ˙ y X ˙ Y
20 fveq2 y = Y F y = F Y
21 20 breq2d Could not format ( y = Y -> ( ( F ` X ) .c_ ( F ` y ) <-> ( F ` X ) .c_ ( F ` Y ) ) ) : No typesetting found for |- ( y = Y -> ( ( F ` X ) .c_ ( F ` y ) <-> ( F ` X ) .c_ ( F ` Y ) ) ) with typecode |-
22 19 21 imbi12d Could not format ( y = Y -> ( ( X .<_ y -> ( F ` X ) .c_ ( F ` y ) ) <-> ( X .<_ Y -> ( F ` X ) .c_ ( F ` Y ) ) ) ) : No typesetting found for |- ( y = Y -> ( ( X .<_ y -> ( F ` X ) .c_ ( F ` y ) ) <-> ( X .<_ Y -> ( F ` X ) .c_ ( F ` Y ) ) ) ) with typecode |-
23 eqidd φ x = X A = A
24 18 22 8 23 9 rspc2vd Could not format ( ph -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) -> ( X .<_ Y -> ( F ` X ) .c_ ( F ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) -> ( X .<_ Y -> ( F ` X ) .c_ ( F ` Y ) ) ) ) with typecode |-
25 14 10 24 mp2d Could not format ( ph -> ( F ` X ) .c_ ( F ` Y ) ) : No typesetting found for |- ( ph -> ( F ` X ) .c_ ( F ` Y ) ) with typecode |-